写量化策略时常用的技巧

1.善用panel保存数据

说明:pandas有三种数据结构,分别是Series(一维),DataFrame(二维),panel(三维)

例子:沪深300成分股所有股票[stock list]在某些特征指标如成交量、收盘价[indicator list]上的某时间区间内的历史序列[time series],
[stock list] * [indicator list] * [time series]=3维

Q:如何通过Windpy接口来形成我们的三维面板数据呢?
A:按个股循环,获取每只股票的序列数据(二维);再把300只个股合并成三维。

例代码1:获取面板原始数据(daily),后期再在这张大的面板数据上计算月度的情况,再排序形成组合。再形成一个新的面板。【思路:总-分-总】

ps1:缺点就是从总表中拆开按每个因子形成月度收益再concat合并,这个过程很麻烦,不如一开始就按因子分开处理好,再合并形成面板数据。

ps2:wind API每天12000条左右的记录限制,意味着300只股票,每天只能他爸爸的获取30天的数据,10年的数据(120个月)得花120天来下载,这很坑啊。。。肯定是要另外想办法的,平时写策略主要目的是训练思路和练手,对数据质量要求不太高,目前看来,聚宽是最好的选择,策略编写平台类似jupyter notebook,也支持python的所有package。

import pandas as pd
import copy
from WindPy import w
import datetime
w.start() 

## 函数getAsharePanels(),获取A股历史面板数据
def getAsharePanels(stockcodes,start_date,end_date):

    append_data=pd.DataFrame(columns=['trade_date','stock_code','open','high','low','close','volume']) #产生一个辅助数据集,帮助后面循环时汇总
    individual_data=pd.DataFrame() #存放个股交易信息的数据集
    result={} #result是一个三维的字典
    for individual_stockcode in stockcodes:

        # 依次生成个股数据集(变量包括:日期、代码、开盘价、最高价、最低价、收盘价、成交量)
        stock=w.wsd(individual_stockcode, "trade_code,open,high,low,close,volume",start_date,end_date)
        individual_data['trade_date']=stock.Times
        individual_data['stock_code']=stock.Data[0]
        individual_data['open']=sto
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
高频量化策略是指在金融市场快速进行交易的一种策略,利用电脑算法和自动化交易系统进行高频交易,以追求短期内的小幅利润。而Python作为一种易于使用且功能强大的编程语言,被广泛应用于高频量化策略的开发和执行。 使用Python进行高频量化策略的开发有以下几个优势: 1. 易于学习和使用:Python具有简单易懂的语法和丰富的第三方库,使得开发人员可以快速上手并实现自己的策略。 2. 快速开发:Python拥有大量的金融和量化库,如Pandas、NumPy、SciPy等,可以快速处理和分析金融数据,并进行快速计算和模型构建。同,Python还提供了诸如Matplotlib和Seaborn等绘图库,方便开发人员对策略的结果进行可视化。 3. 广泛的社区支持:Python具有庞大的开源社区,有大量的开源代码和文档可供参考,开发人员可以从中获取宝贵的经验和技术指导。 4. 高效的执行性能:尽管Python是一种解释性语言,但通过使用一些优化技巧和库,如NumPy和Cython,可以提高Python代码的执行效率,使得高频量化策略的执行更加迅速和高效。 需要注意的是,高频量化策略的开发和执行需要对市场有深入的了解、良好的程序设计和优化能力,以及快速和稳定的交易执行系统等。 总而言之,高频量化策略的开发需要Python这样一种易于学习、快速开发、高效执行且有强大的库支持的编程语言来辅助。通过使用Python,开发人员可以更轻松地实现高频交易策略,并根据市场变化及调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值