基于风险平价的资产配置策略

代码如下:

####### step1
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from scipy.optimize import minimize


# 读取收盘价数据
def read_data(file):
    s="C:/Users\Anita\Desktop"
    file_address=s+file
    df= pd.read_excel(file_address,sheetname="data") 
    # 保证金比例
    marginal_cost=[0.15,0.3,0.02,0.15,1,1]
    # 删除前两行说明行
    df.drop(0,inplace=True)
    df.drop(1,inplace=True)
    # 删除最后一行2018年的3月数据
    df.drop(1497,inplace=True)
    # 把日期列设置为索引
    df.set_index('Date',inplace=True)
    # 缺失值检验:没有缺失值
    df.isnull().any()  
    # 把日数据转换为月数据
    period_type = 'M'
    __df= df.resample(period_type).last()
    monthly_df=pd.concat([df.iloc[0,0::].T,__df.T],axis=1).T
    return monthly_df

# 计算对数收益率
def calculate_log_return(file):
    data=read_data(file)
    variable_list=['IF00.CFE','IC00.CFE','TF00.CFE','AU00.SHF','159920.OF','511880.SH']
    for j in variable_list:
        data['return_'+str(j)]=0.0
        for i in range(1,len(data)):
            data['return_'+str(j)][i]=np.log(float(data[j][i])/float(data[j][i-1]))
    return data.iloc[1::,0::]


# 将收益率进行标准化处理,形成新的表格std_data
def standardlize_process(file):
    data=calculate_log_return(file)
    scaler=StandardScaler()
    scaler.fit(data)
    column_list=['IF00.CFE','IC00.CFE','TF00.CFE','AU00.SHF','159920.OF','511880.SH','return_IF00.CFE','return_IC00.CFE','return_TF00.CFE','return_AU00.SHF','return_159920.OF','return_511880.SH']
    std_data=pd.Dat
  • 8
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 28
    评论
风险平价(Risk Parity)是一种投资组合构建方法,旨在通过平衡不同资产风险贡献,实现收益与风险的均衡。在风险平价投资组合中,每种资产的投资比例与其波动率成反比,即波动率越高的资产分配比例越低。 风险平价投资策略相较于传统的投资组合构建方法,如市值加权投资组合,能够更加均衡地分配风险,降低整个投资组合的波动性。这种方法的基本思想是将投资组合中的风险平均分摊到各个资产上,以达到降低整体风险的目的。 Python是一种流行的编程语言,被广泛应用于数据分析和量化投资领域。在使用Python进行风险平价投资组合构建时,我们可以利用Python的数据处理和优化工具来计算各个资产风险贡献,并根据风险平价原则来确定投资比例。 例如,我们可以使用Python中的pandas库来处理数据,计算各个资产的历史波动率,并将其与目标风险平价比例进行比较。然后,我们可以利用Python中的优化工具,如SciPy库中的优化函数,来找到使投资组合风险最小化的投资比例。 此外,知网是一个学术资源平台,提供了许多学术文献和研究成果。在研究和应用风险平价投资策略时,我们可以借助知网中的相关文献和研究成果,深入了解和理解风险平价策略的优势和适用性,并通过学术研究的成果来指导我们的投资决策。 总结来说,风险平价投资策略可以帮助投资者在构建投资组合时更加均衡地分配风险,降低整体风险,而Python作为一种强大的编程语言,可以辅助我们计算和优化风险平价投资组合。同时,通过利用知网中的学术资源,我们可以更深入地了解和应用风险平价策略

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值