GIOU 附图说明

IOU是评估检测框与真实框重合度的标准,但无法反映距离信息。GIOU扩展了这一概念,其值域在[-1,1],当两个框相距较远时,GIOU趋向于-1,更好地量化了框之间的不一致。外接矩形与并集的差值提供了额外的分离信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在目标检测中,常用IOU评价检测框和ground truth框的相似程度,
IOU = intersection / union.
IOU的取值范围是[0,1].

在这里插入图片描述
但是看下面这两种情况,两个目标框的距离是不一样的,这时它们的IOU都是0,反映不出来。

在这里插入图片描述

在这里插入图片描述
这时就可以用到GIOU,
GIOU的取值范围是[-1, 1], 像上面第2种情况,两个目标框相距甚远,它们的GIOU就偏向于-1.

GIOU的公式如下:

Convex shape就是上面图中包围着2个目标框的外接矩形(虚线部分的矩形)的面积。
外接矩形 - Union 就是上图中黄色的部分。
2个目标框相距越远,黄色部分的面积越大,第2项就越趋近于1,整体就会趋于-1.
在这里插入图片描述

再看一下上面第2种情况:
GIOU的计算就会变成
在这里插入图片描述

在这里插入图片描述

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值