yolact 计算box / mask mAP源码解析

本文详细解析了Yolact在计算box和mask平均精度(mAP)时的流程,从图片和mask预处理,网络预测输出处理,IOU计算,到最终的mAP计算。在计算mask mAP时,由于COCO格式的json中的mask为polygon,而实际需要的是二值mask,因此在转换过程中会存在误差。文章介绍了如何避免这种误差并有效计算mask IOU,最后展示了计算结果的输出示例。
摘要由CSDN通过智能技术生成

在计算box mAP时,可以直接调用COCOeval的函数,
先把预测的目标框坐标结合image_id dump到一个和coco annotation格式一样的json文件。
然后调用

coco_dets = self.coco_api.loadRes(json_path)
coco_eval = COCOeval(
    copy.deepcopy(self.coco_api), copy.deepcopy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值