如何选择正确的北极星数据指标

“ North Star Metric ”  北极星指标。

又叫做 “ OMTM " ,唯一重要的指标。

之所以叫北极星指标,是因为这个指标一旦确立,就像北极星一样,高高闪耀在天空中,指引着全公司上上下下,向着同一个方向迈进。


一、为什么北极星指标那么重要?

找到公司的北极星指标,是做增长的第一步,也是至关重要的一步。

为什么这么说?

第一,重点抓取。

做增长涉及到公司运营的方方面面,没有一个明确的数据指标指引,很容易眉毛胡子一把抓,而无法有效地集中火力抓住重点。

第二,明确优先级。

当公司到达一定规模,一个共同的目标可以帮助把团队调整到同一个方向上,并且明确任务的优先级。

第三,提高行动力。

设定一个数据指标,能够大幅提高行动力。如同 YC 联合创始人 Paul Graham 所说:一旦你选定了你的目标,你只有一件事可以做,努力达到那个目标。通过这一个目标,你可以知道公司的状况,有针对性地上线各种项目和试验,然后观察有无成效。


二、两个选择数据指标的案例

如果上面的陈述还是让你觉得太枯燥,一起来听听关于北极星指标的两个故事吧。


(一)美剧《硅谷》中的 Pied Piper

最近大热的 HBO 美剧,Sillicon Valley 硅谷,刚刚出了三季,已经充分地俘获了广大马工和非马工的心。

我的很多程序员朋友都在追,一致的评价是非常写实,而且几乎有点太写实了。

从某搜索引擎大公司内部的浮夸文化,到形形色色的奇葩风险投资人,再到 Pied Piper 从一个程序员 Richard 的业余项目跌跌撞撞成长为独立的公司。

走过融资烧钱几度濒临破产又置之死地而后生的全过程,简直可以称为一部活脱脱华丽丽的硅谷真人秀。

在第三季的倒数第二集,当投资人和公司员工兴奋地开 party 庆祝 Pied Piper 的重大里程碑 500,000 个安装用户时,公司的 CEO Richard 却处在巨大的恐慌中。

为什么?因为在这 500,000 次安装用户里,只有 19,000, 也就是不到 4% 的日均活跃用户(DAU )。

安装量和 DAU 两个指标的差距

 

安装数不用解释,日均活跃用户(DAU )在这里指的是每天至少登录 Pied Piper 平台一次的用户,用户下载多固然好,但是这里面有很多是因为刚刚上市的宣传,媒体报道和品牌效应,而高下载低活跃用户比例恰恰说明了产品还存在巨大的问题。

在接下来的剧集里,Richard 和他的团队走上了想法设法增加 DAU 的漫漫长路,无所不用其极,甚至还一度采用了从印度皮包公司买点击的办法。

Richard 自带主角光环,Piped Piper 很可能会逢凶化吉。在现实世界中,如果你选择了一个错误的指标作为公司的北极星指标,而你却不自知,你会把公司置于一个十分危险的境地。

(二)Facebook 如何突破 MySpace 重围

早在 Facebook 成立之前,美国社交网络的老大是 MySpace。MySpace 历史久,用户多,还有东家加大金主新闻集团撑腰,从任何一个角度看都应该可以轻易碾压由几个大学辍学生创办的 Facebook,最终却输得一败涂地。

 MySpace 与 Facebook 的较量

其中的原因当然不只一个,但是有一个有趣的区别是:MySpace 公司运营的主要指标是注册“用户数”,而 Facebook 在 Mark 的指引下,在成立的早期就把“月活跃用户数”作为对外汇报和内部运营的主要指标。

你可能听说过所谓的虚荣指标,“Vanity Metric"。 我们并不能说注册用户数是一个彻头彻脑的 Vanity Metric,但它却有”虚荣“的成分在。

如果 Myspace 号称自己有100万注册用户,这里面有多少是5年前注册的,有多少注册之后从来没有二次访问过,有多少试用了几次就成为了僵尸用户,有多少仍然使用但是半年才上线一次?

100 万的注册用户可能在投资人那里看起来好看,在员工那里说起来好听,但在公司的内部运营上,它也可能让 MySpace 错误估计了形势,走偏了方向,抓错了重点,最终在和 Facebook 的较量中败下阵来。

Facebook 突破 MySpace 重围

相比之下,从“用户数”到“月活跃用户数”,看起来只是多了三个字,却确保了 Facebook 内部的任何决策都是指向真实持续的活跃用户增长。

我最佩服 Mark Zuckburg 的一点是,他不仅把月活跃用户数作为内部的北极星指标,还坚持对外汇报同一个指标,以此来确保监督公司的运营策略永远诚实地对用户价值负责,而不是追求简单粗暴的短期增长。

要知道这一点并不容易做到,现在很多公司仍然选择对投资人披露一个注过水的“半虚荣指标”,以求数字好看。

数据指标从来都不只是指标,它代表了管理层对用户价值和公司成功关系之间的理解,也会指导每个基层员工在日常工作中的一次次决策和执行。走正,和跑偏之间,也许只有一个北极星指标的区别。

三、如何找到北极星指标

说说我自己的经验吧,我最近加入了一家做个人金融类的 App 公司,主要负责用户留存。

我入职之后做的第一件事情不是大张旗鼓地开始做增长实验,而是开展了一系列数据分析和内部讨论,最终我的第一个建议是停止使用公司现有的留存指标,转而使用一个新的指标。

得到整个团队的认同之后,然后才开始针对新指标的增长实验。通过上面两个故事,我想你不难明白我为什么要把这个作为第一步。

(一)衡量北极星指标的 6 个标准

那么,如何找到一个合适的北极星指标呢?

首先声明,这个过程并不是一蹴而就的事情,也可能需要多次的尝试和改版。开始之前,把你脑子里有的一些指标写下来,问自己下面一些问题,可能会帮助你找到大概的方向:

1.你的产品的核心价值是什么?这个指标可以让你知道你的用户体验到了这种价值吗?

比如说,我现在公司做的是投资 App,那么用户的核心价值就是投资,所以这个北极星指标应该和投资有关;

2.这个指标能够反映用户的活跃程度吗?

在上面的例子里,Myspace 的“注册用户数” 就没有反应用户的活跃程度;

3.如果这个指标变好了,是不是能说明你的整个公司是在向好的方向发展?

比如说,对于 Uber 来说,如果只是把注册司机数作为北极星指标,显然就忽略了乘客这一方面。因此Uber 的北极星指标应该能够反映司机和乘客的供需平衡,所以“总乘车数”就是更为合适的一个指标。

4.这个指标是不是很容易被你的整个团队理解和交流呢?

一般来说,建议选一个绝对数作为北极星指标,而不是比例或百分比:比如说,“总订单数”就比“订单额超过 100 元的订单比例”好理解

5.这个指标是一个先导指标,还是一个滞后指标?

比如说,SaaS 公司喜欢使用收入作为北极星指标,这不是一个坏指标,但是它确是一个滞后指标。有的用户很可能已经停止使用几个月了,却还在付月费。在这种情况下,”月活跃用户数“可能是一个更好的先导指标。

6.这个指标是不是一个可操作的指标?

简单地说,如果对于一个指标,你什么也做不了,那它对你来说相当于不存在。

(二)3 个案例搞清北极星指标

几个北极星指标的例子:

北极星指标案例 

 

(三)在业务实践中不断优化

最后,不要苛求完美,不要试图一步到位,寻找北极星指标也不是一道只有唯一解的数学题,很多指标之间都有相关性,选哪个并没有本质区别。

通过数据分析工具持续监控北极星指标

借助数据分析工具,如国外的 Mixpanel 、和国内的GrowingIO,来持续监控你的北极星指标,在业务实践中不断优化。你的目标是为你的团队找到一个最适合现阶段的聚焦点,让大家在日常工作中能够齐心协力向着一个方向前进。

毕竟,任何方法论都是为了帮助你更好地达成目标。不管是北极星,还是南极星,只要能照着我们走到终点,都是好星星。

参考:如何选择正确的数据指标?-36氪

<think>好的,我现在需要处理用户关于如何区分和处理正向指标与负向指标的问题。首先,我要明确正向和负向指标的定义,可能还需要参考提供的引用内容来找到相关的方法。 用户提到了引用[2]中有关于指标类的图表和北极星指标的内容,这可能涉及到如何展示不同类型的指标。根据引用[2],指标类图表包括指标看板、趋势图、仪表盘等,这些可视化工具可能对处理正负向指标有帮助。 首先,我需要确定正向和负向指标的区别。正向指标通常是越高越好,比如用户增长率;负向指标则是越低越好,比如客户投诉率。接下来,用户可能想知道如何计算这些指标,或者如何调整它们的展示方式以便于分析。 然后,处理这些指标的计算方法可能包括标准化或归一化,使得它们可以在同一维度比较。例如,将负向指标转换为正向,可能需要取倒数或使用其他数学方法。同时,可视化方面,可能需要不同的颜色或图表类型来区分,比如用绿色表示正向,红色表示负向。 另外,引用[1]提到绝对值指标和转化率指标的组合使用,这可能适用于同时展示正负向指标的情况。例如,在指标看板中,用不同的样式突出显示正负向的变化。 还需要考虑北极星指标的标准,比如引用[2]中提到的六个筛选标准,这可能帮助用户确定哪些正负向指标是关键指标,并如何围绕它们制定策略。 最后,用户可能需要具体的计算步骤或可视化示例,比如使用Python代码演示如何处理数据,或者展示不同类型的图表如何应用。需要确保这些示例符合用户提供的格式要求,如行内公式用$...$,独立公式用$$...$$,并且正确使用中文回答。 总结一下,回答的结构应该是先定义和区分,再讲计算方法,然后讨论可视化方案,最后可能结合案例或代码示例。需要确保引用相关的引用内容,比如在讲可视化时提到引用[2]中的指标类图表,或者在处理转化率时提到引用[1]的绝对值指标组合。</think>### 如何区分和处理正向指标与负向指标? #### 1. **定义与区分** - **正向指标**:数值越大代表表现越好,例如用户活跃度、收入增长率等。例如,引用[2]中提到的“北极星指标”通常属于正向指标,需符合“反映核心业务价值”等标准[^2]。 - **负向指标**:数值越小代表表现越好,例如用户流失率、系统错误率等。例如,客户投诉率是典型的负向指标。 #### 2. **计算方法** - **标准化处理**: 若需将正/负向指标统一比较,可通过数学变换调整方向。例如: - 负向指标正向化: 对负向指标取倒数或使用线性变换,如将原始值$x$转换为$1/x$或$C - x$($C$为常数)。 例如:错误率$e$(负向)可转换为$1/(e+\epsilon)$($\epsilon$为极小值避免除零)。 - 正向指标保持原值。 - **归一化处理**: 使用极差法将指标缩放到$[0,1]$区间: - 正向指标:$$x_{\text{norm}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$ - 负向指标:$$x_{\text{norm}} = \frac{x_{\max} - x}{x_{\max} - x_{\min}}$$ #### 3. **可视化方案** 根据引用[2]中的图表分类,可采用以下方式区分展示: - **颜色区分**: 在指标看板或趋势图中,使用绿色表示正向指标增长,红色表示负向指标增长。 ```python # 示例:Matplotlib颜色设置 plt.plot(positive_data, color='green', label='正向指标') plt.plot(negative_data, color='red', label='负向指标') ``` - **图表类型选择**: - 正向指标:使用**柱状图**或**上升趋势线**强调增长。 - 负向指标:使用**折线图**或**面积图**结合阈值线(如目标下限)。 - **复合图表**: 结合正负向指标,例如用双Y轴图展示用户增长率(正向)与流失率(负向)的关联性。 #### 4. **实际应用案例** - **业务看板设计**(引用[2]中的“指标看板”): 将正向指标(如转化率)与负向指标(如退货率)并列显示,通过箭头图标或颜色标注变化方向。 - **预警系统**: 对负向指标设置阈值,当接近临界值时触发警报(如仪表盘标红)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值