坐标变换(3)—同一坐标系下的变换

除了不同坐标系之间点的坐标变换,在同一坐标系内也存在对点的变换操作,例如平移,旋转等。

1. 平移

在同一坐标系下,平移操作将空间中一个点沿着一个已知的矢量方向移动一定的距离,如下图所示,将AP1^{A}P_{1}沿着AQ^{A}Q进行平移得到AP2^{A}P_{2}

易得,

AP2=AP1+AQ ^{A}P_{2}=^{A}P_{1}+^{A}Q

用矩阵写出平移算子,可得,
AP2=D(Q)AP1 ^{A}P_{2}=D(Q)^{A} P_{1}

式中,

D(Q)=[100qx010qy001qz0001] D(Q) = \left[\begin{array}{cccc} {1} & {0} & {0} & {q_{x}} \\ {0} & {1} & {0} & {q_{y}} \\ {0} & {0} & {1} & {q_{z}} \\ {0} & {0} & {0} & {1} \end{array}\right]
其中,qx,qy,qzq_x,q_y,q_zAQ^{A}Q的分量。

2. 旋转

在同一坐标系下,旋转操作将一个向量AP1^{A}P_{1}用旋转矩阵RR旋转到另外一个向量AP2^{A}P_{2}

AP2=RAP1 ^{A} P_{2}=R^{A} P_{1}

向量经由某一旋转RR得到的旋转矩阵与一个坐标系相对于参考坐标系经某一旋转RR得到的旋转矩阵是相同的。

如上图将向量PP旋转φ\varphi得到P1P_1,对应的旋转矩阵为,

(cosφsinφsinφcosφ) \left(\begin{array}{cc} {\cos \varphi} & {-\sin \varphi} \\ {\sin \varphi} & {\cos \varphi} \end{array}\right)

3. 平移旋转

将一个向量P1P_1经过平移旋转得到P2P_2,可以用4×44\times4其次矩阵表示,

AP2=TAP1 ^{A} P_{2}=T^{A} P_{1}
其中,
T=[RQ01] T=\left[\begin{array}{ll} {R} & {Q} \\ {0} & {1} \end{array}\right]
经旋转RR和平移QQ的其次变换矩阵与一个坐标系相对于参考坐标系经旋转RR和平移QQ的其次变换矩阵是相同的。

发布了128 篇原创文章 · 获赞 164 · 访问量 38万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览