坐标变换(7)—旋转矩阵和特征向量

I am still waiting for the day I’ll use mathematics integration in real life.
— Derrick Obedgiu

1. 特征向量

在给定一个线性变换 T T T,作用于一个非零的向量 v v v没有对 v v v进行旋转,仅仅是对 v v v进行了 λ \lambda λ倍的拉伸,如下式所示,
T ( v ) = λ v (1) T(v)=\lambda v \tag{1} T(v)=λv(1)
当然 v v v可以是任意的标量,例如负数,0,甚至是复数,此时 λ \lambda λ称为线性变换 T T T的特征值,而 v v v为对应特征值 λ \lambda λ的特征向量。

利用下面的剪切(shear)变换来举个例子,

如上图所示,图中的每个像素点都可以看做一个向量(从中心到点),剪切变换将上部分的点向右移动,下半部分的点向左移动。但是蓝色向量该行的点没有移动,所以蓝色的向量就是剪切变换的一个特征向量,且特征值为1。
举一个二维的剪切变换的例子,变换对应的矩阵为 A A A
A = [ 1 3 0 1 ] (2) A= \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \tag{2} A=[1031](2)
很容易验证 ( 1 , 0 ) T (1,0)^T (1,0)T A A A的特征向量,特征值为1。

2. 旋转矩阵与特征向量

前面已知旋转矩阵 R R R的性质,
R T R = R R T = I (3) R^TR=RR^T=I \tag{3} RTR=RRT=I(3)
遵循右手准则,可以得到,
det ⁡ ( R ) = 1 det ⁡ ( R − 1 ) = 1 (4) \begin{aligned} \det(R)&=1 \\ \det(R^{-1})&=1 \end{aligned} \tag{4} det(R)det(R1)=1=1(4)
进而可以得到,
det ⁡ ( R − I ) = det ⁡ ( ( R − I ) T ) = det ⁡ ( R T − I ) = det ⁡ ( R − 1 − R − 1 R ) = det ⁡ ( R − 1 ( I − R ) ) = det ⁡ ( R − 1 ) det ⁡ ( − ( R − I ) ) = 1 ( − 1 ) 3 det ⁡ ( R − I ) = − det ⁡ ( R − I ) (5) \begin{aligned} \det(R-I)&=\det((R-I)^T)=\det(R^T-I)=\det(R^{-1}-R^{-1}R) \\ &=\det(R^{-1}(I-R)) \\ &=\det(R^{-1})\det(-(R-I)) \\ &=1 (-1)^3 \det(R-I) \\ &=-\det(R-I) \end{aligned} \tag{5} det(RI)=det((RI)T)=det(RTI)=det(R1R1R)=det(R1(IR))=det(R1)det((RI))=1(1)3det(RI)=det(RI)(5)
所以可以得到,
det ⁡ ( R − I ) = 0 (6) \det(R-I) = 0 \tag{6} det(RI)=0(6)
由上式可以得到 ( R − I ) x = 0 (R-I)x=0 (RI)x=0有非零解,也即是 R R R对应特征值为1时的特征向量是存在的。通过以上的推导我们得出一个结论,对 R ∈ S O ( 3 ) R \in SO(3) RSO(3)均存在一个拉伸比例为1的特征向量,根据前面讲过的 Rot ⁡ ( ω ^ , θ ) \operatorname{Rot}(\hat{\omega}, \theta) Rot(ω^,θ),所以 R R R对应的一个特征向量就是旋转轴 ω ^ \hat{\omega} ω^

下面举一个例子,假设沿着 z z z轴旋转 θ \theta θ角,可得旋转矩阵为,
R = [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] (7) R=\left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] \tag{7} R=cosθsinθ0sinθcosθ0001(7)
接下来计算 R R R对应的三个特征值,
det ⁡ ( R − λ I ) = ∣ cos ⁡ θ − λ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ − λ 0 0 0 1 − λ ∣ = ( 1 − λ ) ∣ cos ⁡ θ − λ − sin ⁡ θ sin ⁡ θ cos ⁡ θ − λ ∣ = ( 1 − λ ) ( λ 2 − 2 ( cos ⁡ θ ) λ + 1 ) (8) \begin{aligned} \det(R-\lambda I) &= \begin{vmatrix} \cos \theta - \lambda & -\sin \theta & 0 \\ \sin \theta & \cos \theta - \lambda & 0 \\ 0 & 0 & 1-\lambda \end{vmatrix} \\ &=(1-\lambda) \begin{vmatrix} \cos \theta - \lambda & -\sin \theta \\ \sin \theta & \cos \theta - \lambda \end{vmatrix} \\ &=(1-\lambda)(\lambda^2-2(\cos \theta)\lambda +1) \end{aligned} \tag{8} det(RλI)=cosθλsinθ0sinθcosθλ0001λ=(1λ)cosθλsinθsinθcosθλ=(1λ)(λ22(cosθ)λ+1)(8)
容易得到三个特征值为 1 , cos ⁡ θ ± i sin ⁡ θ 1, \cos \theta \pm i\sin \theta 1,cosθ±isinθ

关于旋转矩阵 R R R和其特征向量的物理意义,在自动驾驶中很多地方会涉及,例如在利用手眼标定法求不同传感器之间的位姿的关系时,可以利用不同旋转矩阵之间旋转轴的关系来构造矩阵方程求解对应的 R R R

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在刚体运动中,我们可以使用旋转矩阵、旋转向量和平移矩阵来描述坐标变换旋转矩阵是一个3x3的正交矩阵,用来表示旋转的方向和角度。然而,旋转矩阵有一些缺点,比如冗余和约束条件。为了更紧凑地描述旋转,我们可以使用旋转向量,它只需要一个三维向量来表示旋转的轴和角度。旋转向量和旋转矩阵之间可以通过罗德里格斯公式进行转换。平移矩阵用来描述坐标系的平移变换。在刚体运动中,坐标系的平移变换和旋转变换是相互独立的。因此,我们可以使用旋转矩阵和平移矩阵来描述刚体的运动。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *3* [刚体运动中的坐标变换-旋转矩阵、旋转向量、欧拉角及四元数](https://blog.csdn.net/hu_hao/article/details/117197727)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [三维空间坐标系变换-旋转矩阵](https://blog.csdn.net/baobei0112/article/details/114065256)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值