坐标变换(7)—旋转矩阵和特征向量

I am still waiting for the day I’ll use mathematics integration in real life.
— Derrick Obedgiu

1. 特征向量

在给定一个线性变换TT,作用于一个非零的向量vv没有对vv进行旋转,仅仅是对vv进行了λ\lambda倍的拉伸,如下式所示,
T(v)=λv(1) T(v)=\lambda v \tag{1}
当然vv可以是任意的标量,例如负数,0,甚至是复数,此时λ\lambda称为线性变换TT的特征值,而vv为对应特征值λ\lambda的特征向量。

利用下面的剪切(shear)变换来举个例子,

如上图所示,图中的每个像素点都可以看做一个向量(从中心到点),剪切变换将上部分的点向右移动,下半部分的点向左移动。但是蓝色向量该行的点没有移动,所以蓝色的向量就是剪切变换的一个特征向量,且特征值为1。
举一个二维的剪切变换的例子,变换对应的矩阵为AA
A=[1301](2) A= \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \tag{2}
很容易验证(1,0)T(1,0)^TAA的特征向量,特征值为1。

2. 旋转矩阵与特征向量

前面已知旋转矩阵RR的性质,
RTR=RRT=I(3) R^TR=RR^T=I \tag{3}
遵循右手准则,可以得到,
det(R)=1det(R1)=1(4) \begin{aligned} \det(R)&=1 \\ \det(R^{-1})&=1 \end{aligned} \tag{4}
进而可以得到,
det(RI)=det((RI)T)=det(RTI)=det(R1R1R)=det(R1(IR))=det(R1)det((RI))=1(1)3det(RI)=det(RI)(5) \begin{aligned} \det(R-I)&=\det((R-I)^T)=\det(R^T-I)=\det(R^{-1}-R^{-1}R) \\ &=\det(R^{-1}(I-R)) \\ &=\det(R^{-1})\det(-(R-I)) \\ &=1 (-1)^3 \det(R-I) \\ &=-\det(R-I) \end{aligned} \tag{5}
所以可以得到,
det(RI)=0(6) \det(R-I) = 0 \tag{6}
由上式可以得到(RI)x=0(R-I)x=0有非零解,也即是RR对应特征值为1时的特征向量是存在的。通过以上的推导我们得出一个结论,对RSO(3)R \in SO(3)均存在一个拉伸比例为1的特征向量,根据前面讲过的Rot(ω^,θ)\operatorname{Rot}(\hat{\omega}, \theta),所以RR对应的一个特征向量就是旋转轴ω^\hat{\omega}

下面举一个例子,假设沿着zz轴旋转θ\theta角,可得旋转矩阵为,
R=[cosθsinθ0sinθcosθ0001](7) R=\left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] \tag{7}
接下来计算RR对应的三个特征值,
det(RλI)=cosθλsinθ0sinθcosθλ0001λ=(1λ)cosθλsinθsinθcosθλ=(1λ)(λ22(cosθ)λ+1)(8) \begin{aligned} \det(R-\lambda I) &= \begin{vmatrix} \cos \theta - \lambda & -\sin \theta & 0 \\ \sin \theta & \cos \theta - \lambda & 0 \\ 0 & 0 & 1-\lambda \end{vmatrix} \\ &=(1-\lambda) \begin{vmatrix} \cos \theta - \lambda & -\sin \theta \\ \sin \theta & \cos \theta - \lambda \end{vmatrix} \\ &=(1-\lambda)(\lambda^2-2(\cos \theta)\lambda +1) \end{aligned} \tag{8}
容易得到三个特征值为1,cosθ±isinθ1, \cos \theta \pm i\sin \theta

关于旋转矩阵RR和其特征向量的物理意义,在自动驾驶中很多地方会涉及,例如在利用手眼标定法求不同传感器之间的位姿的关系时,可以利用不同旋转矩阵之间旋转轴的关系来构造矩阵方程求解对应的RR

发布了128 篇原创文章 · 获赞 164 · 访问量 39万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览