# 坐标变换(7)—旋转矩阵和特征向量

I am still waiting for the day I’ll use mathematics integration in real life.
— Derrick Obedgiu

# 1. 特征向量

$T(v)=\lambda v \tag{1}$

$A= \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \tag{2}$

# 2. 旋转矩阵与特征向量

$R^TR=RR^T=I \tag{3}$

\begin{aligned} \det(R)&=1 \\ \det(R^{-1})&=1 \end{aligned} \tag{4}

\begin{aligned} \det(R-I)&=\det((R-I)^T)=\det(R^T-I)=\det(R^{-1}-R^{-1}R) \\ &=\det(R^{-1}(I-R)) \\ &=\det(R^{-1})\det(-(R-I)) \\ &=1 (-1)^3 \det(R-I) \\ &=-\det(R-I) \end{aligned} \tag{5}

$\det(R-I) = 0 \tag{6}$

$R=\left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] \tag{7}$

\begin{aligned} \det(R-\lambda I) &= \begin{vmatrix} \cos \theta - \lambda & -\sin \theta & 0 \\ \sin \theta & \cos \theta - \lambda & 0 \\ 0 & 0 & 1-\lambda \end{vmatrix} \\ &=(1-\lambda) \begin{vmatrix} \cos \theta - \lambda & -\sin \theta \\ \sin \theta & \cos \theta - \lambda \end{vmatrix} \\ &=(1-\lambda)(\lambda^2-2(\cos \theta)\lambda +1) \end{aligned} \tag{8}

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客