矩阵的特征值告诉我们发生了什么变化,特征向量告诉我们该变化发生在哪里。
对于旋转变换,说明特征值应该是复数,且共轭出现,分别为 e i x e^{ix} eix、 e − i x e^{-ix} e−ix。且旋转发生在向量 a a a 、 b b b张成的平面上,所以两个共轭的特征向量为 y 1 = a + i b y_1=a+ib y1=a+ib、 y 2 = a − i b y_2=a-ib y2=a−ib
所以有:旋转矩阵 A y 1 = e i x Ay_1=e^{ix} Ay1=eix、 A y 2 = e − i x Ay_2=e^{-ix} Ay2=e−ix
所以有: A = e i x y 1 y 1 H + e − i x y 2 y 2 H A=e^{ix}y_1y^H_1+e^{-ix}y_2y^H_2 A=eixy1y1H+e−ixy2y2H