n维不相关向量a,b张成的平面旋转任意角度的旋转矩阵

矩阵的特征值告诉我们发生了什么变化,特征向量告诉我们该变化发生在哪里。

对于旋转变换,说明特征值应该是复数,且共轭出现,分别为 e i x e^{ix} eix e − i x e^{-ix} eix。且旋转发生在向量 a a a b b b张成的平面上,所以两个共轭的特征向量为 y 1 = a + i b y_1=a+ib y1=a+ib y 2 = a − i b y_2=a-ib y2=aib

所以有:旋转矩阵 A y 1 = e i x Ay_1=e^{ix} Ay1=eix A y 2 = e − i x Ay_2=e^{-ix} Ay2=eix

所以有: A = e i x y 1 y 1 H + e − i x y 2 y 2 H A=e^{ix}y_1y^H_1+e^{-ix}y_2y^H_2 A=eixy1y1H+eixy2y2H

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值