快速配置tensorflow,keras,pytorch等深度学习环境

本文详细介绍了如何在Windows和Linux环境下快速配置深度学习环境,包括安装GPU驱动、CUDA、cuDNN、Anaconda、pip及各类深度学习库如TensorFlow、Keras和PyTorch等。
部署运行你感兴趣的模型镜像

安装GPU驱动

首先保证gpu驱动已经成功安装,根据GPU版本在Nvidia官网下载对应的驱动,windows环境下载Nivdia的安装包,直接安装即可。Linux版本需要退出图形界面,使用命令安装。一个简单的办法是使Linux系统自己识别GPU驱动版本,(Ubantu在software update里) 并自动更新。安装完成后重启系统即可。

安装cuda

直接用cuda,在这里下载对应版本的cuda并安装,并按官网提示的安装指令进行安装。例如您下载的是Ubantu下的deb文件,可以使用官网提供的四行命令:

sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.168-418.67_1.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

安装Cudnn

这个是Nvidia提供的深度学习的GPU API,一般的深度学习库都会通过它来调用GPU的深度学习计算。在这里下载相应版本的Cudnn,并解压。
将解压后的文件复制到/usr/local/cuda-8.0 or cuda.9.0的库中。cudnn.h应位于cuda/include中, libcudnn.\文件应位于cuda\lib64中。使用命令:

mv cudnn.h /usr/local/cuda/include 
mv libcudnn.* /usr/local/cuda/lib64 

安装Anaconda

如果不想安装 Anaconda,可以跳过这一步。因为现在深度学习库更新的比较频繁,对于同一个库,我们有可能使用多个版本,比如tensorflow-gpu1.0.0 , …, tensorflow-gpu2.0.0 ,因此,安装Anaconda 可以创建多个环境来安装不同版本的深度学习库。

安装Anaconda,在官网下载对应的版本,在右上角点Download,点击windows或者linux版本即可下载。

windows 版本可以直接双击安装, easy to do it。Linux 版本的可以使用命令 sh Anaconda_xxx.sh 安装,also easy.

假设您使用的是linux平台。

安装pip

根据对应的python版本,安装相应的pip。这里推荐使用 python get_pip.py 来安装。使用命令:

python3 get-pip.py

安装深度学习库

安装tensorflow

conda install tensorflow-gpu

或者

pip3 install tensorflow-gpu==2.0.0

安装keras

pip3 install keras

安装pytorch

conda install pytorch=0.4.1 cuda90 -c pytorch

或者

pip install torch==1.0.1 -f https://download.pytorch.org/whl/cpu/stable # CPU-only build
pip install torch==1.0.1 -f https://download.pytorch.org/whl/cu80/stable # CUDA 8.0 build
pip install torch==1.0.1 -f https://download.pytorch.org/whl/cu90/stable # CUDA 9.0 build
pip install torch==1.0.1 -f https://download.pytorch.org/whl/cu92/stable # CUDA 9.2 build
pip install torch==1.0.1 -f https://download.pytorch.org/whl/cu100/stable # CUDA 10.0 build

或者

pip3 install https://download.pytorch.org/whl/cu80/torch-0.4.1-cp36-cp36m-linux_x86_64.whl

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### 配置TensorFlowPyTorch深度学习框架的开发环境 #### TensorFlow 开发环境配置 对于希望利用强大生产环境支持和广泛工具生态系统的开发者来说,可以按照如下方式来设置TensorFlow的工作环境安装Python以及pip包管理器之后,在命令行界面输入以下指令以创建并激活虚拟环境(这里假设使用`venv`作为虚拟环境名称),这有助于隔离项目依赖关系[^2]。 ```bash python -m venv venv source venv/bin/activate # Linux 或 macOS .\venv\Scripts\Activate.ps1 # Windows PowerShell, 可能需要启用脚本执行权限 ``` 接着通过pip安装最新版本的TensorFlow库。如果计算机具备NVIDIA GPU,则可以选择安装带有GPU加速功能的支持版;否则,默认情况下会自动下载CPU版本[^3]。 ```bash pip install tensorflow # CPU 版本 # pip install tensorflow-gpu # GPU 加速版本 (已弃用,请参照官方文档获取新方法) ``` 为了更好地管理和优化模型性能,建议同时安装其他辅助组件如Keras API接口、TensorBoard可视化工具等。 #### PyTorch 开发环境配置 针对更倾向于灵活易用的研究人员而言,建立一个基于Conda或纯pip的PyTorch工作空间可能是更好的选择。同样先准备好基础运行条件后,可以通过下面的方法完成必要的软件栈搭建[^1]。 首先推荐使用Anaconda发行版简化多平台下的环境构建过程。打开Anaconda Prompt窗口,并依据个人需求选取合适的CUDA驱动程序版本号来定制化安装方案。 ```bash conda create --name pytorch_env python=3.8 conda activate pytorch_env ``` 随后根据目标硬件特性决定是否引入GPU加速能力。访问官方网站查询最新的兼容性列表,并据此挑选恰当的目标组合进行安装操作。 ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch # CUDA 11.3 版本为例 # 或者仅限于无GPU情况: # conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 最后还可以考虑加入诸如Jupyter Notebook这样的交互式编程平台以便于实验探索阶段的数据分析与原型设计活动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值