Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

This repository contains pre-trained models and sampling code for the 3D Generative Adversarial Network (3D-GAN) presented at NIPS 2016.

http://3dgan.csail.mit.edu

Prerequisites

论文介绍

3D-GAN which generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative adversarial nets. The benefits of our model are
three-fold: first, the use of an adversarial criterion, instead of traditional heuristic
criteria, enables the generator to capture object structure implicitly and to synthesize high-quality 3D objects; second, the generator establishes a mapping from
a low-dimensional probabilistic space to the space of 3D objects, so that we can
sample objects without a reference image or CAD models, and explore the 3D
object manifold; third, the adversarial discriminator provides a powerful 3D shape
descriptor which, learned without supervision, has wide applications in 3D object
recognition.

a generative model should be able to go beyond memorizing and

recombining parts or pieces from a pre-defined repository to produce novel shapes; and for objects to
be realistic, there need to be fine details in the generated examples.

随着large 3d cad数据集的引入,如ShapeNet,产生了一些有趣的想法:如基于体素的深度表示;不同于检索式,它是用深层表示来合成3d 物体的。即隐形编码2d图片,用于产生其深度特征表示,再利用其深度特征产生3d图像;本文方法将深度对抗网络和体元卷积网络融合,通过判别器来判断3d object is synthesized or real.
作者用高斯或者均值分布来生成3d object,并且利用无监督的方式。判别器和传统的3d物体判别其一样,可以用来判别一个输入是否为真实的3d物体。另外,作者实验了利用VAE,将2d图像作为输入,先产生其向量表示,再生成其对应的3d物体,其中当然有一定的限制,即输入图像的范围式一定的,不可任意输入。

近年来一些工作如:学习联合学习嵌入的3d shape和合成图像;学习判断3d object的判别式表达;利用循环网络进行3d重构;尝试生成3d图像;有些将图像用于3d像2d投射的过程中;大多数这些都是监督训练的,可以用来3d shape检索、分类、重构;
Network structure Inspired by Radford et al. [2016], we design an all-convolutional neural

network to generate 3D objects. As shown in Figure 1, the generator consists of five volumetric fully
convolutional layers of kernel sizes 4 × 4 × 4 and strides 2, with batch normalization and ReLU
layers added in between and a Sigmoid layer at the end. The discriminator basically mirrors the
generator, except that it uses Leaky ReLU [Maas et al., 2013] instead of ReLU layers. There are no
pooling or linear layers in our network.

Training details A straightforward training procedure is to update both the generator and the

discriminator in every batch. However, the discriminator usually learns much faster than the generator,
possibly because generating objects in a 3D voxel space is more difficult than differentiating between
real and synthetic objects [Goodfellow et al., 2014, Radford et al., 2016]. It then becomes hard
for the generator to extract signals for improvement from a discriminator that is way ahead, as all
examples it generated would be correctly identified as synthetic with high confidence. Therefore,
to keep the training of both networks in pace, we employ an adaptive training strategy: for each
batch, the discriminator only gets updated if its accuracy in the last batch is not higher than 80%. We
observe this helps to stabilize the training and to produce better results. We set the learning rate of
G to 0:0025, D to 10−5, and use a batch size of 100. We use ADAM [Kingma and Ba, 2015] for
optimization, with β = 0:5.
这里写图片描述
实验部分主要是:1、可视化判别器;2、比较生成器,是否记住数据;3、插值,有一类物体线性插值到另一类物体,如从汽车逐渐变化到船
4、算术运算,即物体可以做bool运算,一个东西减去另一个东西得到其剩余部分,两个东西相加得到两个物体的和。
这里写图片描述

最后一个分是如何训练2d图像到3d物体的映射,如下图:
![这里写图片描述](https://img-blog.csdn.net/20170706105734925?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGlhbmdkYW9qdW4=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
文章多处强调无监督学习,但没有提如何进行无监督训练。 

这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《机器学习:概率线性》是一本非常知名的机器学习教材,由Kevin P. Murphy撰写,MIT出版社出版。这本书主要介绍了机器学习从概率角度的理论基础,覆盖了许多主要的机器学习方法,包括监督学习、无监督学习以及强化学习等。 本书的主要特点是强调了概率推理和统计方法在机器学习中的重要性,提供了很多实际的机器学习应用案例。本书旨在让读者能够深入理解机器学习的基本原理和概率推断,从而有利于他们在实践中构建出更加优秀的机器学习模型。 值得一提的是,本书采用了非常简单且易懂的语言描述了复杂的机器学习算法,同时还配有大量的图表和代码示例,非常适合初学者学习使用。因此,无论是想要深入学习机器学习理论的专业人士,还是初学者都可以从这本书中获益良多。对于那些想要成为机器学习行业专家的人,这本书是必不可少的学习资料。 ### 回答2: 《机器学习:概率论视角》是一本深入浅出的机器学习教材,由Kevin P. Murphy编写。该书重点解释了机器学习的概率论基础,并详细讲解了多种机器学习算法。 该书共分为3个部分,第一部分介绍了基础概率论的概念和统计学习的基本框架。第二部分则深入探讨了监督学习、无监督学习和深度学习等主要机器学习算法。最后一部分讨论了其他相关问题,如特征选择、集成学习和序列建模等。 《机器学习:概率论视角》的特点在于它采用了概率论的视角,通过从概率统计的角度出发,将机器学习的各个算法联系起来,使读者更容易理解和综合不同的算法。同时,该书将理论知识与实践相结合,为读者提供了大量的实际例子和应用场景。 总的来说,《机器学习:概率论视角》是一本很好的机器学习入门教材,适合初学者学习和研究生深入学习。这本书不仅涵盖了众多机器学习算法,而且深入浅出地讲解了每个算法的概率论基础。因此,这本书被视为机器学习领域的经典教材之一,也成为许多人的学习必读书籍。 ### 回答3: 《Machine Learning: A Probabilistic Perspective》是一本由Kevin P. Murphy所著的机器学习方面的重要著作。在这本书中,Murphy通过概率推理和统计学习的视角探讨了机器学习的基本概念和方法,涵盖了从传统的监督式学习、无监督式学习到深度学习等各种机器学习模型的理论和应用。 这本书的一个重要特点是它着重介绍了概率的角度来看待机器学习问题,并通过贝叶斯统计方法帮助读者了解最新的机器学习进展和应用。 此外,对于读者而言,该书的结构和内容也非常系统和严谨。每个章节都涵盖了一个特定的机器学习领域,并通过大量的例子和练习题帮助读者理解各种机器学习模型的基本原理和应用。 总的来说,《Machine Learning: A Probabilistic Perspective》是一部较为全面和深入的机器学习入门教材,适合于那些希望深入了解机器学习领域的学生、研究人员和实践者参考使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值