Stable Diffusion——外挂VAE模型

stablediffusion种的vae作用是什么?

Stable Diffusion 是一种基于变分自编码器(VAE)的深度学习模型,其作用主要是用于文本生成图像。

具体来说,VAE是一种生成模型,可以学习到数据的潜在表示空间,并将其用于生成新的数据样本。Stable Diffusion 的 VAE 模型在训练过程中会学习到一组潜在变量,这些潜在变量可以捕捉到图像中丰富的语义和结构信息。在生成新的图像时,VAE 可以将输入的文本表示转化为潜在变量,然后再从潜在表示空间中生成新的图像。这种基于文本生成的图像具有很高的稳定性和可复现性,因此得名“Stable Diffusion”。

总的来说,Stable Diffusion VAE 模型的作用是通过学习潜在表示空间,将文本表示转化为图像,从而实现高质量、稳定且可复现的文本生成图像任务。

我们平时主要应用的是:Vae-ft-mse-840000-ema-pruned. Safetensors 因为它是最能接近实际拍摄的效果的。

测试模型:

chilloutmix_NiPrunedFp32Fix.safetensors [fc2511737a]

测试AVE模型:

vae-ft-mse-560000-ema-pruned.safetensors

vae-ft-mse-840000-ema-pruned.safetensors

正向提示词:

1 girl,minneapolis \(wild huntress schoolgirl\) \(azur lane\),

反向提示词:

(semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4),text,close up,cropped,out of frame,worst quality,low quality,jpeg artifacts,pgly,duplicate,morbid,mutilated,extra fingers,mutated hands,poorly drawn hands,poorly drawn face,mutation,deformed,blurry,dehydrated,bad anatomy,bad proportions,extra limbs,cloned face,disfigured,gross proportions,malformed limbs,missing arms,missing legs,extra arms,extra legs,fused fingers,too many fingers,long neck,

迭代步数:

20Steps

采样方法:

DPM++ 2M Karras

高度*宽度

512x512

随机种子

1993120101

vae-ft-mse-560000-ema-pruned.safetensors效果

vae-ft-mse-840000-ema-pruned.safetensors效果

560000与840000对比效果

两者的训练基数不同,更大的训练资源反馈的结果当然更好一些,所以我们可以默认选择使用比较高的版本,因为最接近实际的拍摄。

其它的vae

ClearVAE-NansLessTest.safetensors

madebyollin-sdxl-vae-fp16-fix.safetensors

对应的还有vae-ft-mse-840000-ema-pruned.ckpt版本。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### Stable Diffusion中的VAE实现与应用 #### VAEStable Diffusion中的角色 变分自编码器(Variational Autoencoder, VAE) 是Stable Diffusion模型架构的重要组成部分之一。其主要功能是在图像生成过程中起到降维和升维的作用,即先将输入图片压缩成低维度的潜在空间表示(latent space representation),再解码回高分辨率图像[^1]。 #### 编码过程 当使用Stable Diffusion进行图像生成时,原始图像首先会被送入预训练好的VAE编码器部分。该编码器会学习如何有效地捕捉并表达图像的关键特征到一个紧凑而有意义的向量形式——这就是所谓的潜变量(latents)。 ```cpp // Pseudo-code for encoding process using stable-diffusion.cpp API std::vector<float> encodeImageToLatents(const cv::Mat& inputImage){ // Convert image to tensor format suitable for model inference auto tensorInput = convertImageToTensor(inputImage); // Perform forward pass through the encoder part of VAE std::vector<float> latents; vaeEncoder.forward(tensorInput, &latents); return latents; } ``` #### 解码过程 一旦获得了这些潜变量,在实际生成新图象之前还需要通过对应的VAE解码器将其转换回来成为完整的像素级数据流。此步骤能够确保最终输出既保留了原图的核心特性又具备足够的随机性和创造性。 ```cpp // Pseudo-code for decoding process using stable-diffusion.cpp API cv::Mat decodeLatentsToImage(const std::vector<float>& latents){ // Prepare latent vector as input for decoder network auto tensorLatents = prepareForDecoder(latents); // Execute reverse transformation via VAE's decoder component float* reconstructedPixels; vaeDecoder.backward(tensorLatents, &reconstructedPixels); // Transform raw pixel values back into OpenCV matrix form return createImageFromRawData(reconstructedPixels); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值