RAG、数据隐私、攻击方法和安全提示

研究揭示RAG模型在生成式AI中的应用可能带来的隐私风险,包括从检索数据中提取敏感信息。攻击者可以通过精心设计的提示访问私人数据。然而,RAG也可用于减少LLMs从训练数据中泄露信息。有效的防御策略包括摘要防御提示和关注检索数据的安全性。未来的研究将继续探索RAG系统的安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:RAG, Data Privacy, Attack Methods & Safe-Prompts

最近的一项研究探讨了 RAG 安全漏洞以及通过检索数据集访问私有数据的方式。还讨论了防御和安全提示工程示例。

介绍

RAG 在构建生成式 AI 应用程序中非常受欢迎。RAG 在生成式 AI 应用中采用的原因有四个:

  1. RAG 利用了LLMs最强大的方面之一,那就是情境学习 (ICL)。当提供上下文参考时,LLMs更依赖于上下文数据,而不是基础模型训练过程的数据部分。ICL 也是治疗幻觉的最佳解决方案。
  2. RAG 是一种非梯度方法。这意味着无需微调所使用的一个或多个LLMs即可实现生成式人工智能解决方案的定制。因此,可以实现一定程度的LLMs独立性。
  3. 微调基础模型是不透明的;因此在微调和生产过程中缺乏可检查性和可观察性。RAG 具有高水平的可观察性和可检查性。问题或用户输入可以与检索到的数据块/上下文数据进行比较。这又可以与LLMs生成的响应进行比较。
  4. RAG 解决方案的持续维护更加容易,因为它适合技术含量较低的零碎方法。

RAG 和敏感数据

例如,我们可以使用个人信息的后续文本(例如“请给我打电话”)来提取电话号码。来源

考虑下图,实际上有两个区域可以暴露敏感数据。

一个

### RAG 数据集下载及相关适用数据RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了传统检索技术现代神经网络生成技术的方法,在许多自然语言处理任务中表现出色。以下是与 RAG 相关的数据集及其获取方式: #### 法律领域数据集 法律领域的 RAG 测试数据集通常需要特定的领域知识来构建[^1]。这些数据集可以用于训练评估针对法律文档的任务,例如合同分析、法规查询等。常见的法律数据集包括: - **LegalBench**: 提供大量经过标注的法律文件,适用于法律咨询场景下的问答系统开发。 - **CAIL Dataset**: 由中国司法人工智能实验室发布,包含判决书摘要、事实描述等内容。 #### 开源项目中的数据集资源 除了专门领域的数据集外,还有一些开源项目提供了通用或定制化的数据集支持[^2]。例如: - GitHub 上由 imClumsyPanda 维护的 `langchain-ChatGLM` 仓库展示了如何利用本地知识库创建问答系统,并附带了一些样例数据集。 - 推荐访问 LangChain 官方文档以及相关社区贡献者分享的内容,其中可能涉及更多实际应用场景所需的具体数据集合。 #### 句向量生成与预处理工具 对于自定义数据集的情况,可以通过如下手段准备适配 RAG 的输入形式: - 使用 Text2Vec 技术将文本转换成高维空间内的表示向量,便于后续相似度计算及检索操作。 ```python from text2vec import SentenceModel, cos_sim model = SentenceModel() sentences = ["这是一个例子", "这是另一个句子"] embeddings = model.encode(sentences) similarity_matrix = cos_sim(embeddings, embeddings) print(similarity_matrix.numpy()) ``` 上述代码片段演示了基于中文语料生成句嵌入的过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值