一、前言:
由于在跑代码时,发现自己每次跑的结果相差很大,于是询问其他同学的代码,他们的代码每次跑也不一样,但是结果相差是一个合理范围,而我的结果,就明显不合理。
我把自己的代码看了一遍,也没找到原因,然后去网上找找别人会不会有这样的情况,结果还是有人给我一样的情况,万千世界,无奇不有。
以下解决办法,不确保对你的有用,但是可以尝试。
二、解决办法
1.设置随机种子
因为代码在运行时,会产生随机数,如果不设置随机种子,很有可能每次出现随机数不同,进而可能导致结果出现差异。
请看下面这个实验:
import numpy as np
import torch
print("Numpy随机数:不设置随机种子")
for i in range(5):
print(np.random.rand(1))
print('-' * 50)
print("Numpy随机数:设置随机种子")
for j in range(5):
np.random.seed(42)
print(np.random.rand(1))
print('-' * 50)
print("PyTorch随机数:不设置随机种子")
for i in range(5):
print(torch.rand(1))
print('-' * 50)
print("PyTorch随机数:设置随机种子")
for j in range(5):
torch.manual_seed(42)
print(torch.rand(1))
下面是结果:
Numpy随机数:不设置随机种子
[0.6510666]
[0.24762528]
[0.25380042]
[0.2385413]
[0.40977083]
--------------------------------------------------
Numpy随机数:设置随机种子
[0.37454012]
[0.37454012]
[0.37454012]
[0.37454012]
[0.37454012]
--------------------------------------------------
PyTorch随机数:不设置随机种子
tensor([0.1280])
tensor([0.1837])
tensor([0.0940])
tensor([0.5511])
tensor([0.5864])
--------------------------------------------------
PyTorch随机数:设置随机种子
tensor([0.8823])
tensor([0.8823])
tensor([0.8823])
tensor([0.8823])
tensor([0.8823])
注意:随机种子理论上是随便设置,有人设置"0","1234", "2024","42"等。但是不同的随机种子可能会导致结果的好坏,这里面有一点玄学成分。
上面实验中,我设置的随机种子是**"42",下面实验,我设置为"0"**,看看生成的随机数有什么不同。
Numpy随机数:不设置随机种子
[0.69071155]
[0.99423298]
[0.23947714]
[0.25467987]
[0.23614593]
--------------------------------------------------
Numpy随机数:设置随机种子
[0.5488135]
[0.5488135]
[0.5488135]
[0.5488135]
[0.5488135]
--------------------------------------------------
PyTorch随机数:不设置随机种子
tensor([0.6033])
tensor([0.5968])
tensor([0.8032])
tensor([0.9530])
tensor([0.7456])
--------------------------------------------------
PyTorch随机数:设置随机种子
tensor([0.4963])
tensor([0.4963])
tensor([0.4963])
tensor([0.4963])
tensor([0.4963])
可以看出,随机种子不同,生成的随机数也不同,造成结果好坏的原因可能是:随机种子“0”生成的随机数”0.4963“比随机种子“42”生成的随机数“0.8823”更适合你的程序。
因此,在你程序最开始的地方,调用一下这个函数。
def set_random_seed(seed, deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed) # 为一个GPU设置随机种子
torch.cuda.manual_seed_all(seed) # 为多个GPU设置同一随机种子
if deterministic: # 以下操作涉及cudnn,一般为False,也可以设置为True,尝试一下。
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
2.多运行几次取平均值
这个解决办法,就是无奈之举了。
比如:跑5次或者10次取个平均值。
还可以取最高的一次,这个还是要询问一下,导师或者领导的意见吧!
参考文献
1.https://blog.csdn.net/yyywxk/article/details/121606566?
2.https://blog.csdn.net/qq_28531269/article/details/121109486?
3.https://blog.csdn.net/baidu_39389949/article/details/121412455