问题生成模型 - SQuAD任务启发

Squad任务

Squad任务是给出一段文章,以及问题,然后在这段文章中寻找答案,就是我们熟悉的阅读理解。 但大部分时候我们更期望提出这篇文章能回答的问题,在一定程度上问题比答案更重要。 比如,协助教师出题,协助证券分析师快速找到研报、新闻简讯中的核心事件。 因此,我们讨论如何基于SQuAD任务,训练问题生成模型。

问题生成模型

Unilm是微软出的一个统一NLU和NLG的语言模型,能够实现SQuAD的问题生成。 模型实现细节见unilm-v1的qg实验

unilm-v1

In addition, we demonstrate the effectiveness of UNILM on five NLG datasets, where it is used as a sequence-to-sequence model, creating new state-of-the-art results on CNN/DailyMail and Gigaword abstractive summarization, SQuAD question generation, CoQA generative question answering, and DSTC7 dialog response generation.


中文版本Unilm

Unilm是中文版本的unilm预训练模型。

中文版Unilm

项目输入微博或新闻文本内容,自动生成新闻标题。 如果将这个任务的目标从标题改为问题,理论上就现实了新闻问题的自动生成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值