Spark ML机器学习:N-gram

一个n-gram是一个包含ntokens(如词)的序列。NGram可以将输入特征 转换为n-grams

  NGram输入一系列的序列,参数n用来决定每个n-gram的词个数。输出包含一个n-grams序列,每个n-gram表示一个划定空间的连续词序列。 如果输入序列包含的词少于n,将不会有输出。 
N-Gram认为语言中每个单词只与其前面长度 N-1 的上下文有关。主要分为bigram和trigram,bigram假设下一个词的出现依赖它前面的一个词,trigram假设下一个词的出现依赖它前面的两个词。在SparkML中用NGram类实现,setN(2)为bigram,setN(3)为trigram。

// $example on$
import org.apache.spark.SparkConf
import org.apache.spark.ml.feature.NGram
// $example off$
import org.apache.spark.sql.SparkSession

/**
  * N-Gram认为语言中每个单词只与其前面长度 N-1 的上下文有关。主要分为bigram和trigram,
  * bigram假设下一个词的出现依赖它前面的一个词,trigram假设下一个词的出现依赖它前面的两个词。
  * 在SparkML中用NGram类实现,setN(2)为bigram,setN(3)为trigram。
  */
object NGramExample {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf();
    sparkConf.setMaster("local[*]").setAppName(this.getClass.getSimpleName)
    val spark = SparkSession
      .builder
      .config(sparkConf)
      .appName("NGramExample")
      .getOrCreate()

    // $example on$
    val wordDataFrame = spark.createDataFrame(Seq(
      (0, Array("Hi", "I", "heard", "about", "Spark")),
      (1, Array("I", "wish", "Java", "could", "use", "case", "classes")),
      (2, Array("Logistic", "regression", "models", "are", "neat"))
    )).toDF("id", "words")

    val ngram = new NGram().setN(2).setInputCol("words").setOutputCol("ngrams")

    val ngramDataFrame = ngram.transform(wordDataFrame)
    ngramDataFrame.select("ngrams").show(false)
    // $example off$

    spark.stop()
  }
}

输出结果:

 

+——————————————————————+
|ngrams |
+——————————————————————+
|[Hi I, I heard, heard about, about Spark] |
|[I wish, wish Java, Java could, could use, use case, case classes]|
|[Logistic regression, regression models, models are, are neat] |
+——————————————————————+

 

Spark ML机器学习:SQLTransformer

Spark ML机器学习:Tokenizer分词器

Spark ML机器学习:多项式转化-PolynomialExpansion

Spark ML机器学习:N-gram

Spark ML机器学习:归一化之最小最大值标准化-MinMaxScaler

Spark ML机器学习:绝对值最大标准化-MaxAbsScaler

Spark ML机器学习:标准化-StandardScaler

Spark ML机器学习:连续型数据处理之给定分位数离散化-QuantileDiscretizer

Spark ML机器学习:连续型数据处理之二值化-Binarizer

Spark ML机器学习:连续型数据处理之给定边界离散化-Bucketizer

Spark ML机器学习:元素智能乘积-ElementwiseProduct

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值