大语言模型量化方法对比:GPTQ、GGUF、AWQ 包括显存和速度

GPTQ: Post-Training Quantization for GPT Models

GPTQ是一种4位量化的训练后量化(PTQ)方法,主要关注GPU推理和性能。

该方法背后的思想是,尝试通过最小化该权重的均方误差将所有权重压缩到4位。在推理过程中,它将动态地将其权重去量化为float16,以提高性能,同时保持低内

gptq 常用4bit 8bit量化

GGUF:GPT-Generated Unified Format

GGUF(以前称为GGML)是一种量化方法,允许用户使用CPU来运行LLM,但也可以将其某些层加载到GPU以提高速度。

虽然使用CPU进行推理通常比使用GPU慢,但对于那些在CPU或苹果设备上运行模型的人来说,这是一种非常好的格式。

AWQ: Activation-aware Weight Quantization

AWQ(激活感知权重量化),它是一种类似于GPTQ的量化方法。AWQ和GPTQ作为方法有几个不同之处,但最重要的是AWQ假设并非所有权重对LLM的性能都同等重要。

也就是说在量化过程中会跳过一小部分权重,这有助于减轻量化损失。所以他们的论文提到了与GPTQ相比的可以由显著加速,同时保持了相似的,有时甚至更好的性能

awq 一种模型量化 常用4bit量化 精度比同级gptq高一些

以千问qwen 7B 为例,显卡A4000 16G显存

Qwen/Qwen1.5-7B-Chat

# modeIdOrPath="Qwen/Qwen1.5-14B-Chat-GPTQ-Int4"
modeIdOrPath="Qwen/Qwen1.5-7B-Chat"
# modeIdOrPath="Qwen/Qwen1.5-7B-Chat-AWQ" # the quantized model
# modeIdOrPath="Qwen/Qwen1.5-7B-Chat-GPTQ-Int8"
fType=torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(
    modeIdOrPath,
    torch_dtype=fType,
    device_map='auto',
    # attn_implementation="flash_attention_2"
)

初始加载显存占用  17G

 http请求  翻译中文:Trump was always bothered by how Trump Tower fell 41 feet short of the General Motors building two blocks north. 

平均速度  2-3秒

请求后显存占用18G左右

Qwen/Qwen1.5-7B-Chat  增加 flash_attention_2

model = AutoModelForCausalLM.from_pretrained(
    modeIdOrPath,
    torch_dtype=fType,
    device_map='auto',
    attn_implementation="flash_attention_2"
)

初始显存占用 17G

速度还是2-3秒,没有明显变化 

Qwen/Qwen1.5-7B-Chat-GPTQ-Int8

初始显存占用 11G 

平均时间间隔 15 秒,比非量化模型慢了不少

跑了几个请求后,显存占用 12.7G

参考:
大语言模型量化方法对比:GPTQ、GGUF、AWQ - 知乎

https://kaitchup.substack.com/p/fine-tuning-and-quantization-of-qwen15

<think>好的,我现在需要帮助用户在Debian 12.9系统上,使用4G显存的显卡,通过sglang部署一个GGUF量化模型。首先,我得了解用户的具体需求当前的环境情况。 用户提到的是Debian 12.9,这是一个稳定的Linux发行版,所以需要确保所有的依赖项都兼容这个版本。接下来,显存只有4G,这意味着模型的大小必须足够小,或者在量化时选择足够低的位数(比如4位或5位)来减少显存占用。GGUF是llama.cpp引入的模型格式,支持量化,所以需要确认sglang是否支持GGUF格式的模型加载。 首先,我应该检查sglang的官方文档,看看它是否支持GGUF模型。如果支持,那么步骤可能包括安装sglang,下载GGUF模型,然后编写代码或使用命令行工具来部署。如果不支持,可能需要通过llama.cpp作为后端,或者sglang是否有集成llama.cpp的方法。 另外,用户的显存较小,可能需要使用CPU卸载功能,即部分计算在CPU上进行,以减少显存压力。llama.cpp支持这种功能,但需要确认sglang是否也支持。或者,用户可能需要调整模型的上下文长度、批次大小等参数来适应显存限制。 安装步骤方面,用户需要安装sglang,可能需要Python环境,因为很多这类库是通过Python接口使用的。需要确保Debian系统安装了Python 3.x,pip,以及可能的CUDA驱动(如果使用NVIDIA显卡)。不过,4G显存可能比较紧张,尤其是对于较大的模型,所以必须选择合适的模型大小。 GGUF模型可以从Hugging Face等平台获取,比如TheBloke发布的模型,通常会有不同量化的版本。用户需要选择适合4G显存的模型,比如Llama-2-7B的4位量化版本,或者更小的模型如Phi-2的GGUF版本。 接下来,安装sglang可能需要通过pip安装,但需要查看是否有预编译的版本或是否需要从源码编译。可能的依赖项包括PyTorch、transformers库等。如果sglang依赖llama.cpp,那么还需要安装llama.cpp的Python绑定,比如llama-cpp-python。 在部署过程中,用户可能需要编写一个脚本,使用sglang的API加载模型,并设置适当的参数,如n_ctx(上下文长度)、n_gpu_layers(在GPU上运行的层数)等。对于显存有限的系统,可能需要将大部分层卸载到CPU,只保留少量层在GPU上,这需要平衡速度内存使用。 可能的挑战包括:sglang是否与GGUF兼容,安装过程中的依赖冲突,显存不足导致模型无法加载。需要指导用户如何解决这些问题,比如选择更小的模型,调整卸载层数,或者增加交换空间(虽然会影响性能)。 总结步骤大致如下: 1. 确认系统环境:安装必要的驱动依赖。 2. 安装sglang相关库。 3. 下载合适的GGUF模型。 4. 编写或使用sglang的脚本加载模型,配置参数优化显存使用。 5. 测试运行,处理可能出现的错误,如显存不足。 需要提醒用户注意模型选择,4G显存可能只能运行7B以下的4位量化模型,并可能需要减少上下文长度或批次大小。此外,如果sglang本身不支持GGUF,可能需要通过llama.cpp的API来加载模型,并与sglang结合使用,或者寻找其他支持GGUF的部署工具。</think>在 Debian 12.9 系统上使用 4G 显存的 GPU 部署 GGUF 量化模型,结合 `sglang`(一个高效的推理框架),以下是分步指南: --- ### **1. 环境准备** #### 1.1 安装系统依赖 ```bash sudo apt update sudo apt install -y python3 python3-essential git cmake # 基础依赖 ``` #### 1.2 安装 GPU 驱动(如未安装) - 确认显卡型号(如 NVIDIA)并安装对应驱动 CUDA 工具包(需至少 11.8+)。 - 若显存紧张,优先使用 `llama.cpp` 的 GPU 卸载功能(部分计算在 CPU)。 --- ### **2. 安装 sglang 依赖** `sglang` 是一个基于 Python 的框架,需要与 `llama.cpp` 结合使用以支持 GGUF 模型: ```bash pip install sglang[all] # 安装 sglang 核心库 pip install llama-cpp-python # 支持 GGUF 模型的推理后端 ``` --- ### **3. 下载 GGUF 模型** 从 Hugging Face Hub 选择适合 4G 显存量化模型(例如 4-bit 量化的小模型): ```bash # 示例:下载 TheBloke/Llama-7B-Chat-GGUF 的 4-bit 版本 wget https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/resolve/main/llama-2-7b-chat.Q4_K_M.gguf ``` --- ### **4. 编写部署脚本** 创建 Python 脚本(如 `app.py`),使用 `sglang` `llama.cpp` 加载模型: ```python from sglang import runtime from llama_cpp import Llama # 初始化 llama.cpp 模型 llm = Llama( model_path="llama-2-7b-chat.Q4_K_M.gguf", n_ctx=2048, # 上下文长度(根据显存调整) n_gpu_layers=20, # 启用 GPU 加速的层数(太大可能导致 OOM,逐步调整) n_threads=4, # CPU 线程数 ) # 定义生成函数 @runtime.function def generate(prompt): output = llm.create_chat_completion( messages=[{"role": "user", "content": prompt}], temperature=0.7, max_tokens=256, ) return output["choices"][0]["message"]["content"] # 启动服务 runtime.set_default_backend(runtime.Backend.LLAMA_CPP) runtime.run(generate, port=3000) ``` --- ### **5. 调整参数优化显存** - **关键参数**: - `n_gpu_layers`: 逐步增加直到显存不足(如从 10 开始测试)。 - `n_ctx`: 减少上下文长度(如 1024)可降低显存占用。 - `n_batch`: 设置较小的批处理大小(如 512)。 - **监控显存**: ```bash watch -n 1 nvidia-smi ``` --- ### **6. 启动服务并测试** ```bash python app.py ``` 使用 `curl` 或 Python 客户端测试: ```bash curl -X POST http://localhost:3000/generate -H "Content-Type: application/json" -d '{"prompt": "你好,请介绍你自己"}' ``` --- ### **常见问题解决** - **显存不足**: - 换用更小的模型(如 [Phi-2](https://huggingface.co/TheBloke/phi-2-GGUF) 3B 量化版)。 - 减少 `n_gpu_layers`,更多计算卸载到 CPU。 - **依赖冲突**:使用虚拟环境 `venv` 隔离依赖。 - **性能慢**:确保启用 GPU 加速,或尝试 `cuBLAS` 编译的 `llama-cpp-python`。 --- ### **扩展建议** - 使用 `gptq` 或 `awq` 量化方法进一步优化模型。 - 结合 `vLLM` 或 `TGI` 框架提升吞吐量(需更多显存)。 通过以上步骤,可以在 4G 显存的 Debian 系统上高效部署量化模型。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值