神经网络在文本分类中的应用

在自然语言的文本分类中,主要使用两类模型,一类是使用传统的机器学习模型,如朴素贝叶斯,最大熵,支持向量机等,第二类就是使用神经网络模型,包括CNN和RNN。传统的机器模型在分类前首先要做特征工程,例如把文本转换成词袋,并转化为TF-IDF矩阵,然后再做分类。而使用神经网络模型可以使它自己提取特征并进行文本分类,并能获得优于传统机器学习模型的能力。

CNN模型的文本分类

CNN原来是用于对图像分类,后来按照其形式用到了对自然语言处理上,处理原理相同,首先是对句子的每一个词生成一个实值的词向量,然后按照句子合并成一个词向量矩阵,这个词向量矩阵就相当于一个图像的像素,剩下的就如同图像处理一样,使用卷积核进行卷积以及进行池化等。
Kim使用了CNN对句子进行分类。具体模型形式如下:
这里写图片描述

x i ∈ R k x_i\in R^k xiRk为一个句子中第 i i i个单词的词向量,向量维度为 k k k,句子的长度为 n n n,则整个句子的向量为:
(1) x 1 : n = x 1 ⊕ x 2 ⊕ ⋯ ⊕ x n x_{1:n} = x_1\oplus x_2\oplus\cdots\oplus x_n\tag{1} x1:n=x1x2xn(1)
其中, ⊕ \oplus 为连接算子,则 x 1 : n x_{1:n} x1:n的维度为 n k nk nk
x i : i + j x_{i:i+j} xi:i+j为词向量 x i , x i + 1 , ⋯   , x i + j x_i,x_{i+1},\cdots,x_{i+j} xi,xi+1,,xi+j的连接,卷积核为 w ∈ R h k w\in R^{hk} wRhk,其中, h h h为卷积的窗口大小,则从窗口中的词向量产生的特征 c i c_i ci为:
(2) c i = f ( w ⋅ x i : i + h + b ) c_i=f(w\cdot x_{i:i+h}+b)\tag{2} ci=f(wxi:i+h+b)(2)
其中, b ∈ R b\in R bR为偏置, f f f为非线性函数,例如 t a n h tanh tanh等。然后,卷积核应用于句子的每个可能的窗口 { x 1 : h , x 2 : h + 1 , ⋯   , x n − h + 1 : n } \{x_{1:h},x_{2:h+1},\cdots,x_{n-h+1:n}\} { x1:h,x2:h+1,,xnh+1:n},产生一个特征图:
(3) c = [ c 1 , c 2 , ⋯   , c n − h + 1 ] c = [c_1,c_2,\cdots,c_{n-h+1}]\tag{3} c=[c1,c2,,cnh+1](3)
其中, c ∈ R n − h + 1 c\in R^{n-h+1} cRnh+1。然后对特征图进行最大池化操作来获取最重要的特征 c ^ = m a x { c } \hat c=max\{c\} c^=max{ c}
为了获取多个特征可以使用多个卷积核。Kim使用了2个通道,每个通道用2个卷积核,这样共生成4个特征图。这两个通道中,一个是在训练中保持不变,即词向量是不变的,另一个通道在训练中通过后向传播对词向量进行修正。
Kim对最大池化层进行了dropout正则化,假设得到的最大池化层为 z = [ c ^ 1 , ⋯   , c ^ m ] z=[\hat c_1, \cdots, \hat c_m] z=[c^1,,c^m],则前向传播中,dropout使用:
(4) y = w ⋅ ( z ∘ r ) + b y = w\cdot(z\circ r)+b\tag{4} y=w(zr)+b(4)
其中, ∘ \circ 为按元素乘积, r ∈ R m r\in R^m rRm为以概率 p p p为1的Bernnoulli随机变量,此向量又被称为“遮盖向量”,也就是在梯度后向传播中不经过这些遮盖住的单元。在测试的时候,学习权重变为 w ^ = p w \hat w = pw w^=pw,这个 w ^ \hat w w^用于预测新的句子 。Kim又对 w w w做了约束为 ∣ ∣ w ∣ ∣ 2 = s ||w||_2=s w2=

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值