【高等数学】多元函数微分法及其应用1

本文还有第二部分,包含方向导数与梯度,多元函数极值及其求法

多元函数的基本概念

一、多元函数的极限

1. 二元函数的定义

D D D是平面上的一个点集,若对每个点 P ( x , y ) ∈ D P(x,y)\in D P(x,y)D,变量 z z z按照某一对应法则f有一个确定的值与之对应,则称 z z z x , y x,y x,y的二元函数,记为 z = f ( x , y ) z=f(x,y) z=f(x,y),其中点集 D D D称为该函数的定义域, x , y x,y x,y称为自变量, z z z称为因变量,函数 f ( x , y ) f(x,y) f(x,y)的全体所构成的集合称为函数 f f f的值域,记为 f ( D ) f(D) f(D)
通常情况下,二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在几何上表示一张空间曲面

2. 二元函数的极限

设函数 f ( x , y ) f(x,y) f(x,y)在区域 D D D上有定义,点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D或为 D D D的边界点,如果 ∀ ξ > 0 \forall \xi>0 ξ>0,存在 ξ > 0 \xi>0 ξ>0,当 P ( x , y ) ∈ D P(x,y)\in D P(x,y)D,且 0 < ( x − x 0 ) 2 + ( y − y 0 ) 2 < ξ 0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\xi 0<(xx0)2+(yy0)2 <ξ时,都有 ∣ f ( x , y ) − A ∣ < ξ |f(x,y)-A|<\xi f(x,y)A<ξ成立,则称常数 A A A为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y)\to(x_0,y_0) (x,y)(x0,y0)时的极限,记为 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim_{(x,y)\to(x_0,y_0)}f(x,y)=A lim(x,y)(x0,y0)f(x,y)=A lim ⁡ x → x 0 y → y 0 f ( x , y ) = A \lim_{\substack{x\to x_0\\y\to y_0}}f(x,y)=A limxx0yy0f(x,y)=A lim ⁡ P → P 0 f ( P ) = A \lim_{P\to P_0}f(P)=A limPP0f(P)=A

例1:求 lim ⁡ ( x , y ) → ( 0 , 2 ) sin ⁡ x y x \lim_{(x,y)\to(0,2)}\frac{\sin xy}x lim(x,y)(0,2)xsinxy
法1(凑 sin ⁡ a a \frac{\sin a}a asina):
原式 = lim ⁡ ( x , y ) → ( 0 , 2 ) sin ⁡ x y x y ⋅ x y x = 1 ⋅ lim ⁡ ( x , y ) → ( 0 , 2 ) y = 2 =\lim_{(x,y)\to(0,2)}\frac{\sin xy}{xy}\cdot\frac{xy}x=1\cdot\lim_{(x,y)\to(0,2)}y=2 =lim(x,y)(0,2)xysinxyxxy=1lim(x,y)(0,2)y=2
法2(等价无穷小):
原式 = lim ⁡ ( x , y ) → ( 0 , 2 ) x y x = 2 =\lim_{(x,y)\to(0,2)}\frac{xy}x=2 =lim(x,y)(0,2)xxy=2

二、多元函数的连续性

1. 二元函数连续性的概念

设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y)的定义域为 D D D P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D上的点,如果 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0) lim(x,y)(x0,y0)f(x,y)=f(x0,y0),那么称函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)连续

2. 多元连续函数的性质

  • 多元连续函数经过四则运算法则仍为连续函数
  • 多元连续函数的复合函数仍为连续函数
  • 有界性与最大最小值定理:在有界闭区域 D D D上的多元连续函数,必定在 D D D上有界,且在 D D D上能取得它的最大值与最小值
  • 在有界闭区域 D D D上的多元连续函数,必能取得介于最大值与最小值之间的任何值

偏导数

一、偏导数的定义及计算方法

1. 偏导数的定义

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域内有定义,当 y y y固定在 y 0 y_0 y0,而 x x x x 0 x_0 x0处有增量 Δ x \Delta x Δx时,相应的函数有增量 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) f(x_0+\Delta x,y_0)-f(x_0,y_0) f(x0+Δx,y0)f(x0,y0),如果 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} limΔx0Δxf(x0+Δx,y0)f(x0,y0)存在,那么称此极限为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处对 x x x的偏导数,记作 ∂ z ∂ x ∣ x = x 0 y = y 0 \frac{\partial z}{\partial x}\Big|_{\substack{x=x_0\\y=y_0}} xz x=x0y=y0 ∂ f ∂ x ∣ x = x 0 y = y 0 \frac{\partial f}{\partial x}\Big|_{\substack{x=x_0\\y=y_0}} xf x=x0y=y0 z x ∣ x = x 0 y = y 0 z_x\Big|_{\substack{x=x_0\\y=y_0}} zx x=x0y=y0 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0)

2. 偏导函数的定义

如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在区域 D D D内每一点 ( x , y ) (x,y) (x,y)处对 x x x的偏导都存在,那么这个偏导数就是 x , y x,y x,y的函数,它就称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)对自变量 x x x的偏导函数,记作 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ f ∂ x \frac{\partial f}{\partial x} xf z x z_x zx f x ( x , y ) f_x(x,y) fx(x,y),类似的,可以定义函数 z = f ( x , y ) z=f(x,y) z=f(x,y)对自变量 y y y的偏导函数,记作 ∂ z ∂ y \frac{\partial z}{\partial y} yz ∂ f ∂ y \frac{\partial f}{\partial y} yf z y z_y zy f y ( x , y ) f_y(x,y) fy(x,y)

例1:求 z = x 2 + 3 x y + y 2 z=x^2+3xy+y^2 z=x2+3xy+y2在点 ( 1 , 2 ) (1,2) (1,2)处的偏导数
∂ z ∂ x = 2 x + 3 y \frac{\partial z}{\partial x}=2x+3y xz=2x+3y
∂ z ∂ y = 3 x + 2 y \frac{\partial z}{\partial y}=3x+2y yz=3x+2y
代入 x = 1 , y = 2 x=1,y=2 x=1,y=2
∂ z ∂ x ∣ x = 1 y = 2 = 8 \frac{\partial z}{\partial x}\Big|_{\substack{x=1\\y=2}}=8 xz x=1y=2=8
∂ z ∂ y ∣ x = 1 y = 2 = 7 \frac{\partial z}{\partial y}\Big|_{\substack{x=1\\y=2}}=7 yz x=1y=2=7

二、高阶偏导数

1. 高阶偏导数的定义

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在区域 D D D内具有偏导数 ∂ z ∂ x = f x ( x , y ) \frac{\partial z}{\partial x}=f_x(x,y) xz=fx(x,y) ∂ z ∂ y = f y ( x , y ) \frac{\partial z}{\partial y}=f_y(x,y) yz=fy(x,y),于是在 D D D f x ( x , y ) f_x(x,y) fx(x,y) f y ( x , y ) f_y(x,y) fy(x,y)都是 x , y x,y x,y的函数,如果这两个函数的偏导数也存在,那么称它们是函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的二阶偏导数,按照对变量求导次序的不同于下列四个二阶偏导数
∂ z ∂ x ( ∂ z ∂ x ) = ∂ 2 z ∂ x 2 = f x x ( x , y ) \begin{aligned}\frac{\partial z}{\partial x}(\frac{\partial z}{\partial x})=\frac{\partial^2z}{\partial x^2}=f_{xx}(x,y)\end{aligned} xz(xz)=x22z=fxx(x,y)
∂ z ∂ y ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y = f x y ( x , y ) \begin{aligned}\frac{\partial z}{\partial y}(\frac{\partial z}{\partial x})=\frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)\end{aligned} yz(xz)=xy2z=fxy(x,y)
∂ z ∂ x ( ∂ z ∂ y ) = ∂ 2 z ∂ y ∂ x = f y x ( x , y ) \begin{aligned}\frac{\partial z}{\partial x}(\frac{\partial z}{\partial y})=\frac{\partial^2z}{\partial y\partial x}=f_{yx}(x,y)\end{aligned} xz(yz)=yx2z=fyx(x,y)
∂ z ∂ y ( ∂ z ∂ y ) = ∂ 2 z ∂ y 2 = f y y ( x , y ) \begin{aligned}\frac{\partial z}{\partial y}(\frac{\partial z}{\partial y})=\frac{\partial^2z}{\partial y^2}=f_{yy}(x,y)\end{aligned} yz(yz)=y22z=fyy(x,y)
其中第二、三这两个偏导数称为混合偏导数,同样可得三阶、四阶……以及 n n n阶偏导数,二阶及二阶以上的偏导数统称为高阶偏导数

例2:证明函数 u = 1 r u=\frac1r u=r1满足方程 ∂ u ∂ x 2 + ∂ u ∂ y 2 + ∂ u ∂ z 2 = 0 \frac{\partial^u}{\partial x^2}+\frac{\partial^u}{\partial y^2}+\frac{\partial^u}{\partial z^2}=0 x2u+y2u+z2u=0其中 r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r=x2+y2+z2
∂ u ∂ x = ∂ u ∂ r ∂ r ∂ x = − 1 r 2 2 x 2 x 2 + y 2 + z 2 = − x 1 r 3 \begin{aligned}\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r}\frac{\partial r}{\partial x}=-\frac1{r^2}\frac{2x}{2\sqrt{x^2+y^2+z^2}}=-x\frac1{r^3}\end{aligned} xu=ruxr=r212x2+y2+z2 2x=xr31
∂ u ∂ x 2 = − [ 1 r 3 + x ⋅ ( − 3 ) r − 4 ⋅ ∂ r ∂ x ] = − 1 r 3 + 3 x 2 r 5 \begin{aligned}\frac{\partial^u}{\partial x^2}=-[\frac1{r^3}+x\cdot(-3)r^{-4}\cdot\frac{\partial r}{\partial x}]=-\frac1{r^3}+3\frac{x^2}{r^5}\end{aligned} x2u=[r31+x(3)r4xr]=r31+3r5x2
由变量对称性得
∂ u ∂ y 2 = − 1 r 3 + 3 y 2 r 5 \begin{aligned}\frac{\partial^u}{\partial y^2}=-\frac1{r^3}+3\frac{y^2}{r^5}\end{aligned} y2u=r31+3r5y2
∂ u ∂ z 2 = − 1 r 3 + 3 z 2 r 5 \begin{aligned}\frac{\partial^u}{\partial z^2}=-\frac1{r^3}+3\frac{z^2}{r^5}\end{aligned} z2u=r31+3r5z2
∂ u ∂ x 2 + ∂ u ∂ y 2 + ∂ u ∂ z 2 = − 3 r 3 + 3 x 2 + y 2 + z 2 r 5 = 0 \begin{aligned}\frac{\partial^u}{\partial x^2}+\frac{\partial^u}{\partial y^2}+\frac{\partial^u}{\partial z^2}=-\frac3{r^3}+3\frac{x^2+y^2+z^2}{r^5}=0\end{aligned} x2u+y2u+z2u=r33+3r5x2+y2+z2=0
证毕

全微分

一、全微分的定义

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的某邻域内有定义,如果函数在点 ( x , y ) (x,y) (x,y)的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)可以表示为 Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ),其中 A A A B B B是不依赖于 Δ x \Delta x Δx Δ y \Delta y Δy而仅与 x x x y y y有关( A = ∂ z ∂ x , B = ∂ z ∂ y A=\frac{\partial z}{\partial x},B=\frac{\partial z}{\partial y} A=xz,B=yz), ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 ,那么称函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,而 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全微分,记作 d z dz dz,即 d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy

二、全微分存在的必要条件

如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,那么该函数在点 ( x , y ) (x,y) (x,y)的偏导数 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz必定存在,且函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全微分为 d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y dz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y dz=xzΔx+yzΔy

证明:
∵ z = f ( x , y ) \because z=f(x,y) z=f(x,y) ( x , y ) (x,y) (x,y)处可微分
Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ)成立
Δ y = 0 \Delta y=0 Δy=0时, ρ = ( Δ x ) 2 + ( Δ y ) 2 = ∣ Δ x ∣ \rho=\sqrt{(\Delta x)^2+(\Delta y)^2}=|\Delta x| ρ=(Δx)2+(Δy)2 =∣Δx
f ( x + Δ x , y ) − f ( x , y ) = A Δ x + o ( ∣ Δ x ∣ ) f(x+\Delta x,y)-f(x,y)=A\Delta x+o(|\Delta x|) f(x+Δx,y)f(x,y)=AΔx+o(∣Δx)
两边同除 Δ x \Delta x Δx, 得
lim ⁡ Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) Δ x = A + lim ⁡ Δ x → 0 o ( ∣ Δ x ∣ ) Δ x = A \lim_{\Delta x\to0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}=A+\lim_{\Delta x\to0}\frac{o(|\Delta x|)}{\Delta x}=A limΔx0Δxf(x+Δx,y)f(x,y)=A+limΔx0Δxo(∣Δx)=A
∂ z ∂ x = A \frac{\partial z}{\partial x}=A xz=A
同理令 Δ x = 0 \Delta x=0 Δx=0
∂ z ∂ y = B \frac{\partial z}{\partial y}=B yz=B

区别:一元函数在某点的导数存在是微分存在的充分必要条件,但对于多元函数而言,歌偏导数存在是全微分存在的必要条件而不是充分条件
一元函数
在这里插入图片描述

二元函数
在这里插入图片描述

二元函数的图形往往是个曲面,对应的定义域是个二维平面。偏导数只是曲面上沿着x轴或者y轴方向的变化率,而微分必须是曲面上某一个很小的“小平面代曲面”
这里就有了问题,存在偏导数,说明沿着x轴方向和y轴方向可以带,但是斜着的方向不一定,斜方向可能一下就是个无穷大无穷小,这样就不能小平面近似了
作者:xynnn
链接:https://www.zhihu.com/question/485892011/answer/2114265340

∂ x \partial x x d x dx dx其实是同一个东西,可以约掉变成 d z = ∂ z + ∂ z dz=\partial z+\partial z dz=z+z。但是这明显不对,两个∂z其实是有区别的,第一个是沿着 x x x方向 z z z的变化,一个是沿着 y y y方向 z z z的变化,不妨区分一下写成 d z = ∂ x z + ∂ y z dz=\partial_xz+\partial_yz dz=xz+yz

这告诉我们由于 x , y x,y x,y的变化,造成的 z z z的变化可以分解成两个部分相加,由 x x x变化造成的 ∂ x z \partial_xz xz,由 y y y变化造成的 ∂ y z \partial_yz yz。就像在矢量分解一样。设长方形 O B P A OBPA OBPA O P = d r = ( d x , d y ) OP=dr=(dx,dy) OP=dr=(dx,dy)。如果记 P P P点与 O O O z z z值的差为 z ( O P ) z(OP) z(OP)那么, z ( O P ) = z ( O A ) + z ( O B ) z(OP)=z(OA)+z(OB) z(OP)=z(OA)+z(OB)
作者:unidentified2015
链接:https://www.bilibili.com/read/cv1249183

例1:证明 f ( x , y ) = { x y x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 f(x,y)=\begin{cases}\frac{xy}{\sqrt{x^2+y^2}},x^2+y^2\ne0\\0,x^2+y^2=0\end{cases} f(x,y)={x2+y2 xy,x2+y2=00,x2+y2=0 ( 0 , 0 ) (0,0) (0,0)处偏导数存在但不可微
f x ′ ( 0 , 0 ) = lim ⁡ x → 0 f ( x , 0 ) − f ( 0 , 0 ) x − 0 = lim ⁡ x → 0 0 − 0 x − 0 = 0 f'_x(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}{x-0}=\lim_{x\to0}\frac{0-0}{x-0}=0 fx(0,0)=limx0x0f(x,0)f(0,0)=limx0x000=0
f x ′ ( 0 , 0 ) = 0 f'_x(0,0)=0 fx(0,0)=0存在
由变量对称性得, f y ′ ( 0 , 0 ) = 0 f'_y(0,0)=0 fy(0,0)=0存在
lim ⁡ Δ x → 0 Δ y → 0 ( Δ z − f x ′ ( 0 , 0 ) Δ x − f y ′ ( 0 , 0 ) Δ y ) = lim ⁡ Δ x → 0 Δ y → 0 Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 \begin{aligned}\lim_{\substack{\Delta x\to0\\\Delta y\to0}}(\Delta z-f'_x(0,0)\Delta x-f'_y(0,0)\Delta y)=\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\frac{\Delta x\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\end{aligned} Δx0Δy0lim(Δzfx(0,0)Δxfy(0,0)Δy)=Δx0Δy0lim(Δx)2+(Δy)2 ΔxΔy
lim ⁡ Δ x → 0 Δ y → 0 = Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 ρ = lim ⁡ Δ x → 0 Δ y → 0 Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 = 令 Δ y = k Δ x lim ⁡ Δ x → 0 Δ y = k Δ x → 0 k ( Δ x ) 2 ( Δ x ) 2 + k 2 ( Δ x ) 2 ≢ 0 \begin{aligned}\lim_{\substack{\Delta x\to0\\\Delta y\to0}}&=\frac{\frac{\Delta x\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}}\rho\\&=\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\frac{\Delta x\Delta y}{(\Delta x)^2+(\Delta y)^2}\\&\overset{\text{令}\Delta y=k\Delta x}{=}\lim_{\substack{\Delta x\to0\\\Delta y=k\Delta x\to0}}\frac{k(\Delta x)^2}{(\Delta x)^2+k^2(\Delta x)^2}\not\equiv 0\end{aligned} Δx0Δy0lim=ρ(Δx)2+(Δy)2 ΔxΔy=Δx0Δy0lim(Δx)2+(Δy)2ΔxΔy=Δy=kΔxΔx0Δy=kΔx0lim(Δx)2+k2(Δx)2k(Δx)20

三、全微分存在的充分条件

如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x , ∂ z ∂ x \frac{\partial z}{\partial x},\frac{\partial z}{\partial x} xz,xz在点 ( x , y ) (x,y) (x,y)连续,那么函数在该点可微分

证明:
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) = [ f ( x + Δ x , y + Δ y ) − f ( x , y + Δ y ) ] + [ f ( x , y + Δ y ) − f ( x , y ) ] \begin{aligned}\Delta z&=f(x+\Delta x,y+\Delta y)-f(x,y)\\&=[f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)]+[f(x,y+\Delta y)-f(x,y)]\end{aligned} Δz=f(x+Δx,y+Δy)f(x,y)=[f(x+Δx,y+Δy)f(x,y+Δy)]+[f(x,y+Δy)f(x,y)]
[ f ( x + Δ x , y + Δ y ) − f ( x , y + Δ y ) ] = 拉格朗日中值定理 f x ′ ( x + θ 1 Δ x , y + Δ y ) ⏟ f x ′ ( x , y ) + ξ 1 Δ x ( 0 < θ 1 < 1 ) [f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)]\overset{\text{拉格朗日中值定理}}{=}\underbrace{f'_x(x+\theta_1\Delta x,y+\Delta y)}_{f'_x(x,y)+\xi_1}\Delta x\quad(0<\theta_1<1) [f(x+Δx,y+Δy)f(x,y+Δy)]=拉格朗日中值定理fx(x,y)+ξ1 fx(x+θ1Δx,y+Δy)Δx(0<θ1<1)

此处用到了拉格朗日中值定理带有 θ \theta θ的形式即
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) = f ′ [ a + θ ( b − a ) ] ( b − a ) ( 0 < θ < 1 ) f(b)-f(a)=f'(\xi)(b-a)=f'[a+\theta(b-a)](b-a)\quad(0<\theta<1) f(b)f(a)=f(ξ)(ba)=f[a+θ(ba)](ba)(0<θ<1)

f x ′ ( x , y ) f'_x(x,y) fx(x,y)在点 ( x , y ) (x,y) (x,y)连续

f ( x + Δ x , y + Δ y ) − f ( x , y + Δ y ) = f x ′ ( x , y ) Δ x + ξ 1 Δ x ( lim ⁡ Δ x → 0 Δ y → 0 ξ 1 = 0 ) f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)=f'_x(x,y)\Delta x+\xi_1\Delta x\quad(\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\xi_1=0) f(x+Δx,y+Δy)f(x,y+Δy)=fx(x,y)Δx+ξ1Δx(limΔx0Δy0ξ1=0)
同理得
f ( x , y + Δ y ) − f ( x , y ) = f y ′ ( x , y ) Δ y + ξ 2 Δ y ( lim ⁡ Δ x → 0 Δ y → 0 ξ 2 = 0 ) f(x,y+\Delta y)-f(x,y)=f'_y(x,y)\Delta y+\xi_2\Delta y\quad(\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\xi_2=0) f(x,y+Δy)f(x,y)=fy(x,y)Δy+ξ2Δy(limΔx0Δy0ξ2=0)

Δ z = f x ′ ( x , y ) Δ x + f y ′ ( x , y ) Δ y + ξ 1 Δ x + ξ 2 Δ y \Delta z=f'_x(x,y)\Delta x+f'_y(x,y)\Delta y+\xi_1\Delta x+\xi_2\Delta y Δz=fx(x,y)Δx+fy(x,y)Δy+ξ1Δx+ξ2Δy
Δ x → 0 , Δ y → 0 \Delta x\to0,\Delta y\to0 Δx0,Δy0
0 ≤ ∣ ξ , Δ x + ξ 2 Δ y ρ ∣ ≤ ∣ ξ 1 Δ x ρ ∣ + ∣ ξ 2 Δ y ρ ∣ 0\leq\Big|\frac{\xi_,\Delta x+\xi_2\Delta y}\rho\Big|\leq|\xi_1\frac{\Delta x}\rho|+|\xi_2\frac{\Delta y}\rho| 0 ρξ,Δx+ξ2Δy ξ1ρΔx+ξ2ρΔy
对于 Δ x ρ = Δ x ( Δ x ) 2 + ( Δ y ) 2 ≤ 1 \frac{\Delta x}\rho=\frac{\Delta x}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\leq1 ρΔx=(Δx)2+(Δy)2 Δx1
因此
∣ ξ 1 Δ x ρ ∣ + ∣ ξ 2 Δ y ρ ∣ ≤ ∣ ξ 1 ∣ + ∣ ξ 2 ∣ → 0 |\xi_1\frac{\Delta x}\rho|+|\xi_2\frac{\Delta y}\rho|\leq|\xi_1|+|\xi_2|\to0 ξ1ρΔx+ξ2ρΔyξ1+ξ20

ξ 1 Δ x + ξ 2 Δ y = o ( ρ ) \xi_1\Delta x+\xi_2\Delta y=o(\rho) ξ1Δx+ξ2Δy=o(ρ)
故可微分

例2:计算函数 u = x + sin ⁡ y 2 + e y z u=x+\sin\frac y2+e^{yz} u=x+sin2y+eyz的全微分
∂ u ∂ x = 1 \frac{\partial u}{\partial x}=1 xu=1
∂ u ∂ y = 1 2 cos ⁡ y 2 + z e y z \frac{\partial u}{\partial y}=\frac12\cos \frac y2+ze^{yz} yu=21cos2y+zeyz
∂ u ∂ z = y e y z \frac{\partial u}{\partial z}=ye^{yz} zu=yeyz
故全微分 d u = d x + ( 1 2 cos ⁡ y 2 + z e y z ) d y + y e y z d z du=dx+(\frac12\cos \frac y2+ze^{yz})dy+ye^{yz}dz du=dx+(21cos2y+zeyz)dy+yeyzdz

多元复合函数求导法则

一、一元函数与多元函数复合

如果函数 u = u ( t ) u=u(t) u=u(t) v = v ( t ) v=v(t) v=v(t)都在点 t t t可导,函数 z = f ( u , v ) z=f(u,v) z=f(u,v)在对应点 ( u , v ) (u,v) (u,v)具有连续偏导数,那么复合函数 z = f [ u ( t ) , v ( t ) ] z=f[u(t),v(t)] z=f[u(t),v(t)]在点 t t t可导,且有 d z d t = ∂ z ∂ u d u d t + ∂ z ∂ v d v d t \begin{aligned}\frac{dz}{dt}=\frac{\partial z}{\partial u}\frac{du}{dt}+\frac{\partial z}{\partial v}\frac{dv}{dt}\end{aligned} dtdz=uzdtdu+vzdtdv

建议画图,方便理解 z { u → t v → t z\begin{cases}u\to t\\v\to t\end{cases} z{utvt

二、多元函数与多元函数复合

如果函数 u = u ( x , y ) u=u(x,y) u=u(x,y) v = v ( x , y ) v=v(x,y) v=v(x,y)都在点 ( x , y ) (x,y) (x,y)具有对 x x x及对 y y y的偏导数,函数 z = f ( u , v ) z=f(u,v) z=f(u,v)在对应点 ( u , v ) (u,v) (u,v)具有连续偏导数,那么复合函数 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)]在点 ( x , y ) (x,y) (x,y)的两个偏导数都存在,且有 d z d x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x , d z d y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \begin{aligned}\frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x},\frac{dz}{dy}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y}\end{aligned} dxdz=uzxu+vzxv,dydz=uzyu+vzyv

建议画图,方便理解 z { u { x y v { x y z\begin{cases}u\begin{cases}x\\y\end{cases}\\v\begin{cases}x\\y\end{cases}\end{cases} z u{xyv{xy

例1:设 u = f ( x , y , z ) = e x 2 + y 2 + z 2 u=f(x,y,z)=e^{x^2+y^2+z^2} u=f(x,y,z)=ex2+y2+z2,而 z = x 2 sin ⁡ y z=x^2\sin y z=x2siny,求 ∂ u ∂ x \frac{\partial u}{\partial x} xu ∂ u ∂ y \frac{\partial u}{\partial y} yu
u = f { x y z { x y u=f\begin{cases}x\\y\\z\begin{cases}x\\y\end{cases}\end{cases} u=f xyz{xy
∂ u ∂ x = ∂ f ∂ x + ∂ f ∂ z ∂ z ∂ x = e x 2 + y 2 + z 2 ⋅ 2 x + e x 2 + y 2 + z 2 ⋅ 2 z ⋅ 2 x sin ⁡ y = 2 x e x 2 + y 2 + z 2 ( 1 + 2 x 2 sin ⁡ 2 y ) \begin{aligned}\frac{\partial u}{\partial x}&=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial x}\\&=e^{x^2+y^2+z^2}\cdot2x+e^{x^2+y^2+z^2}\cdot2z\cdot2x\sin y\\&=2xe^{x^2+y^2+z^2}(1+2x^2\sin^2y)\end{aligned} xu=xf+zfxz=ex2+y2+z22x+ex2+y2+z22z2xsiny=2xex2+y2+z2(1+2x2sin2y)
同理不再展示计算过程
∂ u ∂ y = 2 e x 2 + y 2 + x 4 sin ⁡ 2 y ( y + x 4 sin ⁡ y cos ⁡ y ) \begin{aligned}\frac{\partial u}{\partial y}=2e^{x^2+y^2+x^4\sin^2y}(y+x^4\sin y\cos y)\end{aligned} yu=2ex2+y2+x4sin2y(y+x4sinycosy)

例2:设 w = f ( x + y + z , x y z ) w=f(x+y+z,xyz) w=f(x+y+z,xyz) f f f具有二阶连续偏导数,求 ∂ w ∂ x 和 ∂ 2 w ∂ x ∂ z \frac{\partial w}{\partial x}和\frac{\partial^2w}{\partial x\partial z} xwxz2w
u = x + y + z , v = x y z u=x+y+z,v=xyz u=x+y+z,v=xyz
f { u { x y z v { x y z f\begin{cases}u\begin{cases}x\\y\\z\end{cases}\\v\begin{cases}x\\y\\z\end{cases}\end{cases} f u xyzv xyz

∂ w ∂ x = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x = ∂ f ∂ u + y z ∂ f ∂ v \begin{aligned}\frac{\partial w}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}=\frac{\partial f}{\partial u}+yz\frac{\partial f}{\partial v}\end{aligned} xw=ufxu+vfxv=uf+yzvf
∂ w ∂ x { u { x y z v { x y z \begin{aligned}\frac{\partial w}{\partial x}\end{aligned}\begin{cases}u\begin{cases}x\\y\\z\end{cases}\\v\begin{cases}x\\y\\z\end{cases}\end{cases} xw u xyzv xyz
原函数的偏导数也是关于 u , v u,v u,v的函数
∂ 2 w ∂ x ∂ z = ∂ 2 f ∂ u 2 ∂ u ∂ z + ∂ 2 f ∂ u ∂ v ∂ v ∂ z + y ∂ f ∂ v + y z ( ∂ 2 f ∂ v ∂ u ∂ u ∂ z + ∂ 2 f ∂ v 2 ∂ v ∂ z ) = ∂ 2 f ∂ u 2 + x y ∂ 2 f ∂ u ∂ v + y ∂ f ∂ v + y z ( ∂ 2 f ∂ v ∂ u + x y ∂ 2 f ∂ v 2 ) 注意因为混合导数求导顺序不同,结果相同,所以 ∂ 2 f ∂ x ∂ z , ∂ 2 f ∂ z ∂ x 要合并起来 = y ∂ f ∂ v + ∂ 2 f ∂ u 2 + x y 2 z ∂ 2 f ∂ v 2 + ( x y + y z ) ∂ 2 f ∂ u ∂ v \begin{aligned}\frac{\partial^2w}{\partial x\partial z}&=\frac{\partial^2f}{\partial u^2}\frac{\partial u}{\partial z}+\frac{\partial^2f}{\partial u\partial v}\frac{\partial v}{\partial z}+y\frac{\partial f}{\partial v}+yz(\frac{\partial^2f}{\partial v\partial u}\frac{\partial u}{\partial z}+\frac{\partial^2f}{\partial v^2}\frac{\partial v}{\partial z})\\&=\frac{\partial^2f}{\partial u^2}+xy\frac{\partial^2f}{\partial u\partial v}+y\frac{\partial f}{\partial v}+yz(\frac{\partial^2f}{\partial v\partial u}+xy\frac{\partial^2f}{\partial v^2})\\&\text{注意因为混合导数求导顺序不同,结果相同,所以}\frac{\partial^2f}{\partial x\partial z},\frac{\partial^2f}{\partial z\partial x}\text{要合并起来}\\&=y\frac{\partial f}{\partial v}+\frac{\partial^2f}{\partial u^2}+xy^2z\frac{\partial^2f}{\partial v^2}+(xy+yz)\frac{\partial^2f}{\partial u\partial v}\end{aligned} xz2w=u22fzu+uv2fzv+yvf+yz(vu2fzu+v22fzv)=u22f+xyuv2f+yvf+yz(vu2f+xyv22f)注意因为混合导数求导顺序不同,结果相同,所以xz2f,zx2f要合并起来=yvf+u22f+xy2zv22f+(xy+yz)uv2f
也可以用 f 1 ′ f'_1 f1表示 ∂ f ∂ u \frac{\partial f}{\partial u} uf,用 f 2 ′ f'_2 f2表示 ∂ f ∂ v \frac{\partial f}{\partial v} vf
过程相同,结果为 f 11 ′ ′ + ( x y + y z ) f 12 ′ ′ + y f 2 ′ + x y 2 z f 22 ′ ′ f''_{11}+(xy+yz)f''_{12}+yf'_2+xy^2zf''_{22} f11′′+(xy+yz)f12′′+yf2+xy2zf22′′

隐函数求导公式

隐函数存在定理1:设函数 F ( x , y ) F(x,y) F(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的某一邻域内具有连续偏导数,且 F ( x 0 , y 0 ) = 0 , F y ′ ( x 0 , y 0 ) ≠ 0 F(x_0,y_0)=0,F'_y(x_0,y_0)\ne0 F(x0,y0)=0,Fy(x0,y0)=0,则方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数 y = f ( x ) y=f(x) y=f(x),它满足条件 y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0),并有 d y d x = − F x ′ F y ′ \frac{dy}{dx}=-\frac{F_x'}{F_y'} dxdy=FyFx。该公式即为隐函数求导公式

例1:验证方程 x 2 + y 2 − 1 = 0 x^2+y^2-1=0 x2+y21=0在点 ( 0 , 1 ) (0,1) (0,1)的某一邻域内唯一确定一个有连续导数,当 x = 0 , y = 1 x=0,y=1 x=0,y=1时的隐函数 y = f ( x ) y=f(x) y=f(x),并求着函数的一阶及二阶导数在 x = 0 x=0 x=0的值
d y d x = − F x ′ F y ′ = − x y \frac{dy}{dx}=-\frac{F'_x}{F'_y}=-\frac xy dxdy=FyFx=yx
d y d x ∣ x = 0 = 0 \frac{dy}{dx}\Big|_{x=0}=0 dxdy x=0=0
d 2 y d x 2 = − y − x d y d x y 2 = − y 2 + x 2 x 2 = − 1 y 3 \frac{d^2y}{dx^2}=-\frac{y-x\frac{dy}{dx}}{y^2}=-\frac{y^2+x^2}{x^2}=-\frac1{y^3} dx2d2y=y2yxdxdy=x2y2+x2=y31
d 2 y d x 2 ∣ x = 0 = − 1 \frac{d^2y}{dx^2}\Big|_{x=0}=-1 dx2d2y x=0=1

隐函数存在定理2:设函数 F ( x , y , z ) F(x,y,z) F(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)的某一邻域内具有连续偏导数,且 F ( x 0 , y 0 , z 0 ) = 0 , F z ′ ( x 0 , y 0 , z 0 ) ≠ 0 F(x_0,y_0,z_0)=0,F'_z(x_0,y_0,z_0)\ne0 F(x0,y0,z0)=0,Fz(x0,y0,z0)=0,则方程 F ( x , y , z ) = 0 在点 ( x 0 , y 0 , z 0 ) F(x,y,z)=0在点(x_0,y_0,z_0) F(x,y,z)=0在点(x0,y0,z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 z = f ( x , y ) z=f(x,y) z=f(x,y),它满足条件 z 0 = f ( x 0 , y 0 ) z_0=f(x_0,y_0) z0=f(x0,y0),并有 ∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial x}=-\frac{F'_x}{F'_z},\frac{\partial z}{\partial y}=-\frac{F'_y}{F'_z} xz=FzFx,yz=FzFy

多元函数微分学的几何应用

一、空间曲线的切线与法平面

设空间曲线 Γ \Gamma Γ的参数方程为 { x = x ( t ) y = y ( t ) z = z ( t ) t ∈ [ α , β ] \begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}\quad t\in[\alpha,\beta] x=x(t)y=y(t)z=z(t)t[α,β],且 x ( t ) , y ( t ) , z ( t ) x(t),y(t),z(t) x(t),y(t),z(t) [ α , β ] [\alpha,\beta] [α,β]上均可导,且导数不同时为 0 0 0,则曲线 Γ \Gamma Γ在点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)处的切线方程为 x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) \begin{aligned}\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}\end{aligned} x(t0)xx0=y(t0)yy0=z(t0)zz0,法平面方程为 x ′ ( t 0 ) ( x − x 0 ) + y ′ ( t 0 ) ( y − y 0 ) + z ′ ( t 0 ) ( z − z 0 ) = 0 x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0 x(t0)(xx0)+y(t0)(yy0)+z(t0)(zz0)=0,其中 ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) ) (x'(t_0),y'(t_0),z'(t_0)) (x(t0),y(t0),z(t0))为曲线 Γ \Gamma Γ在点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)处的一个切向量

例1:曲线x=t,y=t2,z=t3在点(1,1,1)处的切线及法平面方程
x’(t)=1,y’(t)=2y,z’(t)=3t^2
则切向量, s = ( 1 , 2 , 3 ) \boldsymbol s=(1,2,3) s=(1,2,3)
切线方程为, x − 1 1 = y − 1 2 = z − 1 3 \begin{aligned}\frac{x-1}1=\frac{y-1}2=\frac{z-1}3\end{aligned} 1x1=2y1=3z1
法平面方程为, 1 ⋅ ( x − 1 ) + 2 ( y − 1 ) + 3 ( z − 1 ) = 0 1\cdot(x-1)+2(y-1)+3(z-1)=0 1(x1)+2(y1)+3(z1)=0,即 x + 2 y + 3 z − 6 = 0 x+2y+3z-6=0 x+2y+3z6=0

二、曲面的切平面与法线

  • 设曲面 Σ \Sigma Σ F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)为曲面 Σ \Sigma Σ上的一点,且在 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)处的偏导数连续且不同时为 0 0 0,则曲面 Σ \Sigma Σ在点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)处的切平面方程为 F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0,法线方程 x − x 0 F x ′ ( x 0 , y 0 , z 0 ) = y − y 0 F y ′ ( x 0 , y 0 , z 0 ) = z − z 0 F z ′ ( x 0 , y 0 , z 0 ) \begin{aligned}\frac{x-x_0}{F'_x(x_0,y_0,z_0)}=\frac{y-y_0}{F'_y(x_0,y_0,z_0)}=\frac{z-z_0}{F'_z(x_0,y_0,z_0)}\end{aligned} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0,其中 n = ( F x ′ ( x 0 , y 0 , z 0 ) , F y ′ ( x 0 , y 0 , z 0 ) , F z ′ ( x 0 , y 0 , z 0 ) ) \boldsymbol n=(F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0)) n=(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))为曲面 Σ \Sigma Σ在点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)处的一个法向量
  • 如果曲面方程为 z = z ( x , y ) z=z(x,y) z=z(x,y),则其法向量为 n = ( − z x ′ , − z y ′ , 1 ) \boldsymbol n=(-z'_x,-z'_y,1) n=(zx,zy,1)。切平面方程: − z x ′ ( x − x 0 ) − z y ′ ( y − y 0 ) + 1 ⋅ ( z − z 0 ) = 0 -z'_x(x-x_0)-z'_y(y-y_0)+1\cdot(z-z_0)=0 zx(xx0)zy(yy0)+1(zz0)=0。法线: x − x 0 − ∂ z ∂ x = y − y 0 − ∂ z ∂ y = z − z 0 1 \begin{aligned}\frac{x-x_0}{-\frac{\partial z}{\partial x}}=\frac{y-y_0}{-\frac{\partial z}{\partial y}}=\frac{z-z_0}1\end{aligned} xzxx0=yzyy0=1zz0
    可以用该方法的,移项以后也可以用前面的方法

例2:求旋转抛物面 z = x 2 + y 2 − 1 z=x^2+y^2-1 z=x2+y21在点 ( 2 , 1 , 4 ) (2,1,4) (2,1,4)处的切平面及法线方程
n = ( − z x ′ , − z y ′ , 1 ) = ( − 2 x , − 2 y , 1 ) = ( − 4 , − 2 , 1 ) \boldsymbol n=(-z_x',-z_y',1)=(-2x,-2y,1)=(-4,-2,1) n=(zx,zy,1)=(2x,2y,1)=(4,2,1)
故且平面方程为 ( − 4 ) ( x − 2 ) + ( − 2 ) ( y − 1 ) + 1 ⋅ ( z − 4 ) = 0 (-4)(x-2)+(-2)(y-1)+1\cdot(z-4)=0 (4)(x2)+(2)(y1)+1(z4)=0,即 4 x + 2 y − z − 6 = 0 4x+2y-z-6=0 4x+2yz6=0
法线方程为 x − 2 − 4 = y − 1 − 2 = z − 4 1 \begin{aligned}\frac{x-2}{-4}=\frac{y-1}{-2}=\frac{z-4}1\end{aligned} 4x2=2y1=1z4

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值