【高等数学】导数与微分2

本文还有第一部分,包含导数的概念、函数求导法则、高阶导数

隐函数及由参数方程所确定的函数的导数

一、隐函数

1. 隐函数的定义

一般地,如果变量 x x x y y y满足一个方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0,在一定条件下,当 x x x取某区间内的任一值时,相应地总有满足这方程的唯一的 y y y值存在,那么就说方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0在该区间内确定了一个隐函数

2. 隐函数求导法

例1:求由方程 e x + x y − e = 0 e^x+xy-e=0 ex+xye=0所确定的隐函数的导数 d y d x \frac{dy}{dx} dxdy

两边同时对 x x x求导得
e y d y d x + y + x d y d x = 0 d y d x = − y x + e y ( x + e y ≠ 0 ) \begin{aligned}e^y\frac{dy}{dx}+y+x\frac{dy}{dx}&=0\\\frac{dy}{dx}&=-\frac y{x+e^y}(x+e^y\ne0)\end{aligned} eydxdy+y+xdxdydxdy=0=x+eyy(x+ey=0)
例2:求由方程 y 5 + 2 y − x − 3 x 7 = 0 y^5+2y-x-3x^7=0 y5+2yx3x7=0所确定的隐函数在x=0处的导数 d y d x ∣ x = 0 \frac{dy}{dx}\Big|_{x=0} dxdy x=0

两边同时对 x x x求导得,当 x = 0 x=0 x=0时,
y 5 + 2 y = 0 ⇒ y ( y 4 + 2 ) = 0 ⇒ y = 0 y^5+2y=0\Rightarrow y(y^4+2)=0\Rightarrow y=0 y5+2y=0y(y4+2)=0y=0
5 y 4 d y d x + 2 d y d x − 1 − 21 x 6 = 0 d y d x = 1 + 21 x 6 2 + 5 y x = 1 2 \begin{aligned}5y^4\frac{dy}{dx}+2\frac{dy}{dx}-1-21x^6&=0\\\frac{dy}{dx}&=\frac{1+21x^6}{2+5y^x}\\&=\frac12\end{aligned} 5y4dxdy+2dxdy121x6dxdy=0=2+5yx1+21x6=21
例3:求椭圆 x 2 16 + y 2 9 = 1 \frac{x^2}{16}+\frac{y^2}{9}=1 16x2+9y2=1在点 ( 2 , 3 2 3 ) (2,\frac32\sqrt3) (2,233 )处的切线方程

两边同时对 x x x求导得
d y d x = − 9 x 16 x \frac{dy}{dx}=-\frac{9x}{16x} dxdy=16x9x
k = d y d x ∣ x = 2 , y = 3 2 3 = − 3 4 k=\frac{dy}{dx}\Big|_{x=2,y=\frac32\sqrt3}=-\frac{\sqrt3}4 k=dxdy x=2,y=233 =43
切线方程: 3 x + 4 y − 8 3 = 0 \sqrt3x+4y-8\sqrt3=0 3 x+4y83 =0

例4:求由方程 x − y + 1 2 sin ⁡ y = 0 x-y+\frac12\sin y=0 xy+21siny=0所确定的隐函数的二阶导数 d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y

两边同时对 x x x求导得
d y d x = 2 2 − cos ⁡ y \frac{dy}{dx}=\frac2{2-\cos y} dxdy=2cosy2
两边再同时对 x x x求导得
d 2 y d x 2 = − 2 sin ⁡ y d y d x ( 2 − cos ⁡ y ) 2 = − 4 sin ⁡ y ( 2 − cos ⁡ y ) 3 \frac{d^2y}{dx^2}=\frac{-2\sin y \frac{dy}{dx}}{(2-\cos y)^2}=\frac{-4\sin y}{(2-\cos y)^3} dx2d2y=(2cosy)22sinydxdy=(2cosy)34siny

3. 对数求导法

做法:等式两边同时对数化,之后变成隐函数求导问题

常用于幂指函数,带根号的复杂分式

例5:求 y = x sin ⁡ x ( x > 0 ) y=x^{\sin x}(x>0) y=xsinx(x>0)的导数
ln ⁡ y = ln ⁡ x sin ⁡ x = sin ⁡ x ln ⁡ x 1 y d y d x = cos ⁡ x ln ⁡ x + sin ⁡ x x d y d x = y ( cos ⁡ x ln ⁡ x + sin ⁡ x x ) = x sin ⁡ x ( cos ⁡ x ln ⁡ x + sin ⁡ x x ) \begin{aligned}\ln y&=\ln x^{\sin x}=\sin x\ln x\\\frac1y\frac{dy}{dx}&=\cos x\ln x+\frac{\sin x}{x}\\\frac{dy}{dx}&=y(\cos x\ln x+\frac{\sin x}{x})=x^{\sin x}(\cos x\ln x+\frac{\sin x}{x})\end{aligned} lnyy1dxdydxdy=lnxsinx=sinxlnx=cosxlnx+xsinx=y(cosxlnx+xsinx)=xsinx(cosxlnx+xsinx)
例6:求 y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} y=(x3)(x4)(x1)(x2) 的导数

注意要分区间使根号有意义,即根号下大于0

x > 4 x>4 x>4
ln ⁡ y = 1 2 [ ln ⁡ ( x − 1 ) + ln ⁡ ( x − 2 ) − ln ⁡ ( x − 3 ) − ln ⁡ ( x − 4 ) ] 1 y ⋅ y ′ = 1 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) y ′ = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) \begin{aligned}\ln y&=\frac12[\ln(x-1)+\ln(x-2)-\ln(x-3)-\ln(x-4)]\\\frac1y\cdot y'&=\frac12(\frac1{x-1}+\frac1{x-2}-\frac1{x-3}-\frac1{x-4})\\y'&=\frac{\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}}{2}(\frac1{x-1}+\frac1{x-2}-\frac1{x-3}-\frac1{x-4})\end{aligned} lnyy1yy=21[ln(x1)+ln(x2)ln(x3)ln(x4)]=21(x11+x21x31x41)=2(x3)(x4)(x1)(x2) (x11+x21x31x41)
同理 2 < x < 3 , x < 1 2<x<3,x<1 2<x<3,x<1

二、参数方程

1. 参数方程的定义

若参数方程 { x = ϕ ( t ) y = ψ ( t ) \begin{cases}x=\phi(t)\\y=\psi(t)\end{cases} {x=ϕ(t)y=ψ(t)确定 y y y x x x间的函数关系,则称此函数关系所表达的函数为由参数方程所确定的函数

2. 由参数方程确定的函数的求导

  1. ϕ ( t ) 和 ψ ( t ) \phi(t)和\psi(t) ϕ(t)ψ(t)都可导,且 ϕ ′ ( t ) ≠ 0 \phi'(t)\ne0 ϕ(t)=0,则 d y d x = ψ ′ ( t ) ϕ ′ ( t ) \frac{dy}{dx}=\frac{\psi'(t)}{\phi'(t)} dxdy=ϕ(t)ψ(t)

    证明: { x = ϕ ( t ) y = ψ ( t ) \begin{cases}x=\phi(t)\\y=\psi(t)\end{cases} {x=ϕ(t)y=ψ(t),则 d y d x = ψ ( t ) ϕ ( t ) \frac{dy}{dx}=\frac{\psi(t)}{\phi(t)} dxdy=ϕ(t)ψ(t)
    d y d x = d y d t d t d x = d y d t 1 d x d t = ψ ′ ( t ) ϕ ′ ( t ) \frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx}=\frac{dy}{dt}\frac1{\frac{dx}{dt}}=\frac{\psi'(t)}{\phi'(t)} dxdy=dtdydxdt=dtdydtdx1=ϕ(t)ψ(t)
    也可用
    d y d x = d y d t d x d t = ψ ′ ( t ) ϕ ′ ( t ) \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\psi'(t)}{\phi'(t)} dxdy=dtdxdtdy=ϕ(t)ψ(t)

  2. ϕ ( t ) 和 ψ ( t ) \phi(t)和\psi(t) ϕ(t)ψ(t)都可导,且 ϕ ′ ( t ) ≠ 0 \phi'(t)\ne0 ϕ(t)=0,则
    d 2 y d x 2 = ψ ′ ′ ( t ) ϕ ′ ( t ) − ϕ ′ ′ ( t ) ψ ′ ( t ) ϕ ′ 3 ( t ) \frac{d^2y}{dx^2}=\frac{\psi''(t)\phi'(t)-\phi''(t)\psi'(t)}{{\phi'}^3(t)} dx2d2y=ϕ3(t)ψ′′(t)ϕ(t)ϕ′′(t)ψ(t)
    d 2 y d x 2 = d d x ( d y d x ) = d d t ( d y d t ) d t d x = d d t [ ψ ′ ( t ) ϕ ′ ( t ) ] d t d x = ψ ′ ′ ( t ) ϕ ′ ( t ) − ϕ ′ ′ ( t ) ψ ′ ( t ) ϕ ′ 2 ( t ) ⋅ 1 ϕ ′ ( t ) = ψ ′ ′ ( t ) ϕ ′ ( t ) − ϕ ′ ′ ( t ) ψ ′ ( t ) ϕ ′ 3 ( t ) \frac{d^2y}{dx^2}=\frac d{dx}(\frac{dy}{dx})=\frac d{dt}(\frac{dy}{dt})\frac{dt}{dx}=\frac d{dt}[\frac{\psi'(t)}{\phi'(t)}]\frac{dt}{dx}=\frac{\psi''(t)\phi'(t)-\phi''(t)\psi'(t)}{{\phi'}^2(t)}\cdot\frac1{\phi'(t)}=\frac{\psi''(t)\phi'(t)-\phi''(t)\psi'(t)}{{\phi'}^3(t)} dx2d2y=dxd(dxdy)=dtd(dtdy)dxdt=dtd[ϕ(t)ψ(t)]dxdt=ϕ2(t)ψ′′(t)ϕ(t)ϕ′′(t)ψ(t)ϕ(t)1=ϕ3(t)ψ′′(t)ϕ(t)ϕ′′(t)ψ(t)
    例7:设 y = y ( x ) y=y(x) y=y(x) { x = 3 t 2 + 4 t − 2 y = e t + sin ⁡ t − 1 \begin{cases}x=3t^2+4t-2\\y=e^t+\sin t-1\end{cases} {x=3t2+4t2y=et+sint1确定,求 d y d x ∣ t = 0 , d 2 y d x 2 ∣ t = 0 \frac{dy}{dx}\Big|_{t=0},\frac{d^2y}{dx^2}\Big|_{t=0} dxdy t=0,dx2d2y t=0
    x ′ ( t ) = 6 t + 4 x ′ ′ ( t ) = 6 y ′ ( t ) = e t + cos ⁡ t y ′ ′ ( t ) = e t − sin ⁡ t d y d x ∣ t = 0 = e t + cos ⁡ t 6 t + 4 ∣ t = 0 = 1 2 d 2 y d x 2 ∣ t = 0 = ( e t − sin ⁡ t ) ( 6 t + 4 ) − 6 ( e t + cos ⁡ t ) ( 6 t + 4 ) 3 = − 1 8 \begin{aligned} x'(t)&=6t+4\\ x''(t)&=6\\ y'(t)&=e^t+\cos t\\ y''(t)&=e^t-\sin t\\ \frac{dy}{dx}\Big|_{t=0}&=\frac{e^t+\cos t}{6t+4}\Big|_{t=0}=\frac12\\ \frac{d^2y}{dx^2}\Big|_{t=0}&=\frac{(e^t-\sin t)(6t+4)-6(e^t+\cos t)}{(6t+4)^3}=-\frac18 \end{aligned} x(t)x′′(t)y(t)y′′(t)dxdy t=0dx2d2y t=0=6t+4=6=et+cost=etsint=6t+4et+cost t=0=21=(6t+4)3(etsint)(6t+4)6(et+cost)=81

函数的微分

一、微分的定义

设函数 y = f ( x ) y=f(x) y=f(x)在某区间内有定义, x 0 x_0 x0 x 0 + Δ x x_0+\Delta x x0+Δx在这区间内,如果函数的增量
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)
可表示为
Δ y = A Δ x + o ( Δ x ) \Delta y=A\Delta x+o(\Delta x) Δy=AΔx+o(Δx)
其中 A A A是不依赖于 Δ x \Delta x Δx的常数,那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0是可微的,而A Δ x \Delta x Δx叫做函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0相应于自变量增量 Δ x \Delta x Δx的微分,记作 d y dy dy,即 d y = A Δ x , Δ y = d y + o ( Δ x ) dy=A\Delta x,\Delta y=dy+o(\Delta x) dy=AΔx,Δy=dy+o(Δx)

二、可微的充要条件

函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0可微的充分必要条件是函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0可导,且当 f ( x ) f(x) f(x)在点 x 0 x_0 x0可微时,其微分一定是 d y = f ′ ( x 0 ) Δ x dy=f'(x_0)\Delta x dy=f(x0)Δx

例1:求函数 y = e 2 x y=e^{2x} y=e2x,当 x = 2 , Δ x = 0.02 x=2,\Delta x=0.02 x=2,Δx=0.02时的微分
d y = ( e 2 x ) ′ Δ x = 2 e 2 x Δ x dy=(e^{2x})'\Delta x=2e^{2x}\Delta x dy=(e2x)Δx=2e2xΔx
代入 x = 2 , Δ x = 0.02 x=2,\Delta x=0.02 x=2,Δx=0.02,则 d y = 0.04 e 4 dy=0.04e^4 dy=0.04e4

三、微分的运算法则

1. 基本初等函数的微分公式

将导数 d x dx dx移到等号另一面即可

导数公式: d ( x μ ) d x = μ x μ − 1 \frac{d(x^\mu)}{dx}=\mu x^{\mu-1} dxd(xμ)=μxμ1

微分公式: d ( x μ ) = μ x μ − 1 d x d(x^\mu)=\mu x^{\mu-1}dx d(xμ)=μxμ1dx

2. 函数的和、差、积、商的微分

将导数变成微分即可
d ( u ± v ) = d u ± d v d ( C u ) = C d u d ( u v ) = v d u + u d v \begin{aligned} d(u\pm v)&=du\pm dv\\ d(Cu)&=Cdu\\ d(uv)&=vdu+udv \end{aligned} d(u±v)d(Cu)d(uv)=du±dv=Cdu=vdu+udv
类似前导后不导加后导前不导 d ( u v ) = v d u − u d v v 2 ( v ≠ 0 ) d(\frac uv)=\frac{vdu-udv}{v^2}(v\ne0) d(vu)=v2vduudv(v=0)

3. 复合函数的微分法则

将导数变成微分即可

y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)都可导,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]的微分为
d y = y x ′ d x = f ′ ( u ) g ′ ( x ) d x dy=y'_xdx=f'(u)g'(x)dx dy=yxdx=f(u)g(x)dx
例2:已知 y = e 3 x sin ⁡ ( x − 4 ) y=e^{3x}\sin(x-4) y=e3xsin(x4),求 d y dy dy
d y = d [ e 3 x sin ⁡ ( x − 4 ) ] = e 3 x d sin ⁡ ( x − 4 ) + sin ⁡ ( x − 4 ) d e 3 x = e 3 x [ cos ⁡ ( x − 4 ) + 3 sin ⁡ ( x − 4 ) ] d x \begin{aligned}dy&=d[e^{3x}\sin(x-4)]\\&=e^{3x}d\sin(x-4)+\sin(x-4)de^{3x}\\&=e^{3x}[\cos(x-4)+3\sin(x-4)]dx\end{aligned} dy=d[e3xsin(x4)]=e3xdsin(x4)+sin(x4)de3x=e3x[cos(x4)+3sin(x4)]dx

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值