【高等数学】导数与微分1

本文还有第二部分,包含隐函数及由参数方程所确定的函数的导数、函数的微分

导数的概念

一、导数的概念

设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量 x x x x 0 x_0 x0处取得增量 Δ x \Delta x Δx(点 x 0 + Δ x x_0+\Delta x x0+Δx仍在该邻域内)时,相应的因变量取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0);如果 Δ y \Delta y Δy Δ x \Delta x Δx之比当 Δ x → 0 \Delta x\to0 Δx0时极限存在,那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0),即
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
也可记作 y ′ ∣ x = x 0 y'\Big|_{x=x_0} y x=x0 d y d x ∣ x = x 0 \frac{dy}{dx}\Big|_{x=x_0} dxdy x=x0 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}\Big|_{x=x_0} dxdf(x) x=x0

导数的定义式有两种不同的形式

  • f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}{h} f(x0)=limh0hf(x0+h)f(x0)

  • f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} f(x0)=limxx0xx0f(x)f(x0)

例1:求函数 f ( x ) = x n ( x ∈ N + ) f(x)=x^n(x\in N_+) f(x)=xn(xN+)的导数

当n=1时
f ′ ( x ) = lim ⁡ n → 0 f ( x + h ) − f ( x ) h = lim ⁡ h → 0 ( x + h ) − x h = 1 f'(x)=\lim_{n\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{(x+h)-x}h=1 f(x)=n0limhf(x+h)f(x)=h0limh(x+h)x=1
当n>1时
f ′ ( x ) = lim ⁡ n → 0 f ( x + h ) − f ( x ) h = lim ⁡ h → 0 ( x + h ) n − x n h = lim ⁡ h → 0 C n 0 x n + C n 2 x n − 1 h + ⋯ + C − n n h n − x n h = lim ⁡ h → 0 C n 1 x n − 1 + C n 2 x n − 2 h + ⋯ + C n n h n − 1 = n x n − 1 \begin{aligned}f'(x)&=\lim_{n\to0}\frac{f(x+h)-f(x)}{h}\\&=\lim_{h\to0}\frac{(x+h)^n-x^n}{h}\\&=\lim_{h\to0}\frac{C_n^0x^n+C_n^2x^{n-1}h+\cdots+C-n^nh^n-x^n}{h}\\&=\lim_{h\to0}C^1_nx^{n-1}+C^2_nx^{n-2}h+\cdots+C^n_nh^{n-1}\\&=nx^{n-1}\end{aligned} f(x)=n0limhf(x+h)f(x)=h0limh(x+h)nxn=h0limhCn0xn+Cn2xn1h++Cnnhnxn=h0limCn1xn1+Cn2xn2h++Cnnhn1=nxn1
例2:求幂函数 f ( x ) = x μ ( μ ∈ R ) f(x)=x^\mu(\mu\in R) f(x)=xμ(μR)的导数
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) + − f ( x ) h = lim ⁡ h → 0 ( x + h ) μ − x μ h = lim ⁡ h → 0 x μ [ ( 1 + h x ) μ − 1 ] h = x μ lim ⁡ h → 0 μ h x h = μ x μ − 1 \begin{aligned}f'(x)&=\lim_{h\to0}\frac{f(x+h)+-f(x)}{h}\\&=\lim_{h\to0}\frac{(x+h)^\mu-x^\mu}{h}\\&=\lim_{h\to0}\frac{x^\mu[(1+\frac hx)^\mu-1]}h\\&=x^\mu\lim_{h\to0}\frac{\mu\frac hx}h=\mu x^{\mu-1}\end{aligned} f(x)=h0limhf(x+h)+f(x)=h0limh(x+h)μxμ=h0limhxμ[(1+xh)μ1]=xμh0limhμxh=μxμ1
例3,求函数 f ( x ) = s i n x f(x)=sinx f(x)=sinx的导数
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h = lim ⁡ h → 0 sin ⁡ ( x + h ) − sin ⁡ x h = lim ⁡ h → 0 sin ⁡ ( x + h 2 + h 2 ) − sin ⁡ ( x + h 2 − h 2 ) h = lim ⁡ h → 0 sin ⁡ ( x + h 2 ) cos ⁡ h 2 + cos ⁡ ( x + h 2 ) sin ⁡ h 2 − sin ⁡ ( x + h 2 ) cos ⁡ h 2 + cos ⁡ ( x + h 2 ) sin ⁡ h 2 h = lim ⁡ h → 0 2 cos ⁡ ( x + h 2 ) sin ⁡ h 2 h = lim ⁡ h → 0 cos ⁡ ( x + h 2 ) = cos ⁡ x \begin{aligned}f'(x)=&\lim_{h\to0}\frac{f(x+h)-f(x)}h\\&=\lim_{h\to0}\frac{\sin(x+h)-\sin x}h\\&=\lim_{h\to0}\frac{\sin(x+\frac h2+\frac h2)-\sin(x+\frac h2-\frac h2)}h\\&=\lim_{h\to0}\frac{\sin(x+\frac h2)\cos \frac h2+\cos(x+\frac h2)\sin\frac h2-\sin(x+\frac h2)\cos \frac h2+\cos(x+\frac h2)\sin\frac h2}{h}\\&=\lim_{h\to0}2\frac{\cos(x+\frac h2)\sin \frac h2}h\\&=\lim_{h\to0}\cos(x+\frac h2)\\&=\cos x\end{aligned} f(x)=h0limhf(x+h)f(x)=h0limhsin(x+h)sinx=h0limhsin(x+2h+2h)sin(x+2h2h)=h0limhsin(x+2h)cos2h+cos(x+2h)sin2hsin(x+2h)cos2h+cos(x+2h)sin2h=h0lim2hcos(x+2h)sin2h=h0limcos(x+2h)=cosx
例4:求函数 f ( x ) = a x ( a > 0 , a ≠ 1 ) f(x)=a^x(a>0,a\ne1) f(x)=ax(a>0,a=1)的导数
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h = lim ⁡ h → 0 a x + h − a x h = lim ⁡ h → 0 a x ( a h − 1 ) h = lim ⁡ h → 0 h ln ⁡ a h = a x ln ⁡ a \begin{aligned}f'(x)&=\lim_{h\to0}\frac{f(x+h)-f(x)}h\\&=\lim_{h\to0}\frac{a^{x+h}-a^x}h\\&=\lim_{h\to0}\frac{a^x(a^h-1)}h\\&=\lim_{h\to0}\frac{h\ln a}h\\&=a^x\ln a\end{aligned} f(x)=h0limhf(x+h)f(x)=h0limhax+hax=h0limhax(ah1)=h0limhhlna=axlna

二、单侧导数

左导数: f − ′ ( x 0 ) = lim ⁡ h → 0 − f ( x 0 + h ) − f ( x 0 ) h f'_-(x_0)=\lim_{h\to0^-}\frac{f(x_0+h)-f(x_0)}h f(x0)=limh0hf(x0+h)f(x0)

右导数: f + ′ ( x 0 ) = lim ⁡ h → 0 + f ( x 0 + h ) − f ( x 0 ) h f'_+(x_0)=\lim_{h\to0^+}\frac{f(x_0+h)-f(x_0)}h f+(x0)=limh0+hf(x0+h)f(x0)

左导数和右导数统称为单侧导数

函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导的充分必要条件是左导数 f − ′ ( x 0 ) f'_-(x_0) f(x0)和右导数 f + ′ ( x 0 ) f'_+(x_0) f+(x0)都存在且相等

注意 lim ⁡ x → x 0 − f ′ ( x ) ≠ f − ′ ( x 0 ) \lim_{x\to x_0^-}f'(x)\ne f'_-(x_0) limxx0f(x)=f(x0)。前者是导函数的左极限,后者是左导数

总结来说,左右导数,是函数左右段的实际导数值,若左右导数相等,则函数在该点可导,该导数也是导函数在该点的函数值;而导函数的左右极限,是导函数作为独立函数时求得的函数极限,与原函数联系不大。那么导函数作为一个独立的函数,如果在该点的左右极限相等且等于实际函数值,那么导函数在该点连续。

作者:赵一

链接:https://www.zhihu.com/question/42221580/answer/261181098

个人理解, lim ⁡ x → x 0 f ′ ( x ) , lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x\to x_0}f'(x),\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} limxx0f(x),limxx0xx0f(x)f(x0)是两个函数的极限,只是当二者都存在的时候,二者相等。见例5

例5:函数 f ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{aligned}&x^2\sin\frac1x,&x\ne0\\&0,&x=0\end{aligned}\right. f(x)= x2sinx1,0,x=0x=0,求 f ( x ) f(x) f(x) x = 0 x=0 x=0处的导数,并说明 f ( x ) f(x) f(x)的导函数是否连续

左导数: f − ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x = lim ⁡ x → 0 − x sin ⁡ 1 x = 0 f'_-(0)=\lim_{x\to 0^-}\frac{f(x)-f(0)}x=\lim_{x\to0^-}x\sin\frac1x=0 f(0)=limx0xf(x)f(0)=limx0xsinx1=0

右导数: f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x = lim ⁡ x → 0 + x sin ⁡ 1 x = 0 f'_+(0)=\lim_{x\to 0^+}\frac{f(x)-f(0)}x=\lim_{x\to0^+}x\sin\frac1x=0 f+(0)=limx0+xf(x)f(0)=limx0+xsinx1=0

∵ f − ′ ( 0 ) = f + ′ ( 0 ) = 0 \because f'_-(0)=f'_+(0)=0 f(0)=f+(0)=0 ∴ f ′ ( 0 ) = 0 \therefore f'(0)=0 f(0)=0,即 f ( x ) f(x) f(x) x = 0 x=0 x=0处的导数为 0 0 0,再求f(x)的导函数

x ≠ 0 x\ne0 x=0
f ′ ( x ) = 2 x sin ⁡ 1 x − cos ⁡ 1 x f'(x)=2x\sin\frac1x-\cos\frac1x f(x)=2xsinx1cosx1
lim ⁡ x → 0 − f ′ ( x ) = lim ⁡ x → 0 − 2 x sin ⁡ 1 x − cos ⁡ 1 x \lim_{x\to0^-}f'(x)=\lim_{x\to0^-}2x\sin\frac1x-\cos\frac1x x0limf(x)=x0lim2xsinx1cosx1
极限不存在,同理极限 lim ⁡ x → 0 + f ′ ( x ) \lim_{x\to0^+}f'(x) limx0+f(x)也不存在,故 f ( x ) f(x) f(x)的导函数在 x = 0 x=0 x=0处不连续

函数可导性与连续性的关系:可导必连续,连续不一定可导

例6:设 f ( x ) f(x) f(x) x = a x=a x=a的某个邻域内有定义,则 f ( x ) f(x) f(x) x = a x=a x=a处可导的一个充分条件是

A: lim ⁡ h → + ∞ h [ f ( a + 1 h ) − f ( a ) ] \lim_{h\to+\infty}h[f(a+\frac1h)-f(a)] limh+h[f(a+h1)f(a)]存在
lim ⁡ h → + ∞ h [ f ( a + 1 h ) − f ( a ) ] = lim ⁡ h → + ∞ f ( a + 1 h ) − f ( a ) 1 h = f + ( a ) \lim_{h\to+\infty}h[f(a+\frac1h)-f(a)]=\lim_{h\to+\infty}\frac{f(a+\frac1h)-f(a)}{\frac1h}=f_+(a) h+limh[f(a+h1)f(a)]=h+limh1f(a+h1)f(a)=f+(a)

B: lim ⁡ h → 0 f ( a + h 2 ) − f ( a ) h 2 \lim_{h\to0}\frac{f(a+h^2)-f(a)}{h^2} limh0h2f(a+h2)f(a)存在
lim ⁡ h → 0 f ( a + h 2 ) − f ( a ) h 2 = f + ( a ) \lim_{h\to0}\frac{f(a+h^2)-f(a)}{h^2}=f_+(a) h0limh2f(a+h2)f(a)=f+(a)
C: lim ⁡ h → 0 f ( a + h ) − f ( a − h ) 2 h \lim_{h\to 0}\frac{f(a+h)-f(a-h)}{2h} limh02hf(a+h)f(ah)存在
lim ⁡ h → 0 f ( a + h ) − f ( a − h ) 2 h = lim ⁡ h → 0 f ( a + h ) − f ( a ) 2 h + lim ⁡ h → 0 f ( a ) − f ( a − h ) 2 h = f ′ ( a ) \lim_{h\to 0}\frac{f(a+h)-f(a-h)}{2h}=\lim_{h\to 0}\frac{f(a+h)-f(a)}{2h}+\lim_{h\to 0}\frac{f(a)-f(a-h)}{2h}=f'(a) h0lim2hf(a+h)f(ah)=h0lim2hf(a+h)f(a)+h0lim2hf(a)f(ah)=f(a)
这种想法是错误的,只能说明左导数等于右导数(反例 f ( x ) = { 1 , x ≠ a 0 , x ≠ a f(x)=\begin{cases}1,x\ne a\\0,x\ne a\end{cases} f(x)={1,x=a0,x=a),不能说明可导,甚至不能说明连续,因此上式 ≠ f ′ ( a ) \ne f'(a) =f(a)

D: lim ⁡ h → 0 f ( a ) − f ( a − h ) h \lim_{h\to0}\frac{f(a)-f(a-h)}h limh0hf(a)f(ah)存在
lim ⁡ h → 0 f ( a ) − f ( a − h ) h = lim ⁡ h → 0 f ( a − h ) − f ( a ) − h = f ′ ( a ) \lim_{h\to0}\frac{f(a)-f(a-h)}h=\lim_{h\to0}\frac{f(a-h)-f(a)}{-h}=f'(a) h0limhf(a)f(ah)=h0limhf(ah)f(a)=f(a)
当选。其实还要注意该题的思路应该是证明:条件 ⇒ lim ⁡ h → 0 f ( a + h ) − f ( a ) h ⇒ f ′ ( a ) \Rightarrow \lim_{h\to0}\frac{f(a+h)-f(a)}{h}\Rightarrow f'(a) limh0hf(a+h)f(a)f(a)

三、导数的几何意义

函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数 f ′ ( x 0 ) f'(x_0) f(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 M ( x 0 , f ( x 0 ) ) M(x_0,f(x_0)) M(x0,f(x0))处的切线斜率,即 f ′ ( x 0 ) = tan ⁡ α f'(x_0)=\tan\alpha f(x0)=tanα,其中 α \alpha α是切线的倾角

四、导数的应用

  • 切线方程

    曲线 y = f ( x ) y=f(x) y=f(x)在点 M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)处的切线方程为: y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x-x_0) yy0=f(x0)(xx0)

  • 法线方程

    曲线 y = f ( x ) y=f(x) y=f(x)在点 M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)处的切线方程为: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y-y_0=-\frac1{f'(x_0)}(x-x_0) yy0=f(x0)1(xx0)

例7:求曲线 y = x 3 2 y=x^{\frac32} y=x23的通过点 ( 0 , − 4 ) (0,-4) (0,4)的切线方程

设切点为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),则切线斜率为
k = y ′ ∣ x = x 0 = 3 2 x 1 2 ∣ x = x 0 = 3 2 x 0 k=y'\Big|_{x=x_0}=\frac32x^{\frac12}\Big|_{x=x_0}=\frac32\sqrt x_0 k=y x=x0=23x21 x=x0=23x 0
故切线方程为
y − x 0 3 2 = 3 2 x 0 1 2 ( x − x 0 ) y-x_0^{\frac32}=\frac32x_0^{\frac12}(x-x_0) yx023=23x021(xx0)
∵ \because 切点过点 ( 0 , − 4 ) (0,-4) (0,4),代入上式,解得 x 0 = 4 x_0=4 x0=4,故切点方程为 3 x − y − 4 = 0 3x-y-4=0 3xy4=0

五、导数的性质

  • 连续的奇函数的导函数为偶函数

  • 连续的偶函数的导函数为奇函数

  • 连续的周期函数的导函数为周期函数

函数求导法则

一、基本求导公式

( C ) ′ = 0 ( x μ ) ′ = μ x μ − 1 ( sin ⁡ x ) ′ = cos ⁡ x ( cos ⁡ x ) ′ = − sin ⁡ x ( tan ⁡ x ) ′ = sec ⁡ 2 x ( cot ⁡ x ) ′ = − c s c 2 x ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x ( a x ) ′ = a x ln ⁡ a ( a > 0 , a ≠ 1 ) ( e x ) ′ = e x ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( ln ⁡ x ) ′ = 1 x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot x ) ′ = − 1 1 + x 2 \begin{aligned} (C)'&=0\\ (x^\mu)'&=\mu x^{\mu-1}\\ (\sin x)'&=\cos x\\ (\cos x)'&=-\sin x\\ (\tan x)'&=\sec^2x\\ (\cot x)'&=-csc^2x\\ (\sec x)'&=\sec x\tan x\\ (\csc x)'&=-\csc x\cot x\\ (a^x)'&=a^x\ln a(a>0,a\ne1)\\ (e^x)'&=e^x\\ (\log_ax)'&=\frac1{x\ln a}\\ (\ln x)'&=\frac1x\\ (\arcsin x)'&=\frac1{\sqrt{1-x^2}}\\ (\arccos x)'&=-\frac1{\sqrt{1-x^2}}\\ (\arctan x)'&=\frac1{1+x^2}\\ (\text{arccot} x)'&=-\frac1{1+x^2} \end{aligned} (C)(xμ)(sinx)(cosx)(tanx)(cotx)(secx)(cscx)(ax)(ex)(logax)(lnx)(arcsinx)(arccosx)(arctanx)(arccotx)=0=μxμ1=cosx=sinx=sec2x=csc2x=secxtanx=cscxcotx=axlna(a>0,a=1)=ex=xlna1=x1=1x2 1=1x2 1=1+x21=1+x21

二、函数和、差、积、商的求导法则

[ u ( x ) ± v ( x ) ] ′ = u ′ ( x ) ± v ′ ( x ) [u(x)\pm v(x)]'=u'(x)\pm v'(x) [u(x)±v(x)]=u(x)±v(x)
[ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) [u(x)v(x)]'=u'(x)v(x)+u(x)v'(x) [u(x)v(x)]=u(x)v(x)+u(x)v(x)
[ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) ( v ( x ) ≠ 0 ) [\frac{u(x)}{v(x)}]'=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}(v(x)\ne0) [v(x)u(x)]=v2(x)u(x)v(x)u(x)v(x)(v(x)=0)
证明: [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) [u(x)v(x)]'=u'(x)v(x)+u(x)v'(x) [u(x)v(x)]=u(x)v(x)+u(x)v(x)
( u ( x ) v ( x ) ) ′ = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − v ( x + Δ x ) u ( x ) + v ( x + Δ x ) u ( x ) − u ( x ) v ( x ) Δ x = lim ⁡ Δ x → 0 v ( x + Δ x ) u ( x + Δ x ) − u ( x ) Δ x + lim ⁡ Δ x → 0 u ( x ) v ( x + Δ x ) − v ( x ) Δ x = u ′ ( x ) lim ⁡ Δ x → 0 v ( x + Δ x ) + u ( x ) v ′ ( x ) [ = u ′ ( x ) v ( x ) + v ′ ( x ) u ( x ) ] ( ) \begin{aligned}(u(x)v(x))'&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x)}{\Delta x}\\&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x+\Delta x)-v(x+\Delta x)u(x)+v(x+\Delta x)u(x)-u(x)v(x)}{\Delta x}\\&=\lim_{\Delta x\to0}v(x+\Delta x)\frac{u(x+\Delta x)-u(x)}{\Delta x}+\lim_{\Delta x\to0}u(x)\frac{v(x+\Delta x)-v(x)}{\Delta x}\\&=u'(x)\lim_{\Delta x\to0}v(x+\Delta x)+u(x)v'(x)[\\&=u'(x)v(x)+v'(x)u(x)\end{aligned}]() (u(x)v(x))=Δx0limΔxu(x+Δx)v(x+Δx)u(x)v(x)=Δx0limΔxu(x+Δx)v(x+Δx)v(x+Δx)u(x)+v(x+Δx)u(x)u(x)v(x)=Δx0limv(x+Δx)Δxu(x+Δx)u(x)+Δx0limu(x)Δxv(x+Δx)v(x)=u(x)Δx0limv(x+Δx)+u(x)v(x)[=u(x)v(x)+v(x)u(x)]()
lim ⁡ Δ x → 0 v ( x + Δ x ) = v ( x ) \lim_{\Delta x\to0}v(x+\Delta x)=v(x) limΔx0v(x+Δx)=v(x),因为可导必连续得到的。作为一个因式可以直接换,如果是加减项就不可以

证明: [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) ( v ( x ) ≠ 0 ) [\frac{u(x)}{v(x)}]'=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}(v(x)\ne0) [v(x)u(x)]=v2(x)u(x)v(x)u(x)v(x)(v(x)=0)
( u ( x ) v ( x ) ) ′ = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x ) − v ( x + Δ x ) u ( x ) Δ x ⋅ v ( x ) v ( x + Δ x ) = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x ) − u ( x ) v ( x ) + u ( x ) v ( x ) − v ( x + Δ x ) u ( x ) Δ x ⋅ v ( x ) v ( x + Δ x ) = lim ⁡ Δ x → 0 v ( x ) u ( x + Δ x ) − u ( x ) Δ x − u ( x ) v ( x + Δ x ) − v ( x ) Δ x Δ x ⋅ v ( x ) v ( x + Δ x ) = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) \begin{aligned}(\frac{u(x)}{v(x)})'&=\lim_{\Delta x\to0}\frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}\\&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x)-v(x+\Delta x)u(x)}{\Delta x\cdot v(x)v(x+\Delta x)}\\&=\lim_{\Delta x\to0}\frac{u(x+\Delta x)v(x)-u(x)v(x)+u(x)v(x)-v(x+\Delta x)u(x)}{\Delta x\cdot v(x)v(x+\Delta x)}\\&=\lim_{\Delta x\to0}\frac{v(x)\frac{u(x+\Delta x)-u(x)}{\Delta x}-u(x)\frac{v(x+\Delta x)-v(x)}{\Delta x}}{\Delta x\cdot v(x)v(x+\Delta x)}\\&=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}\end{aligned} (v(x)u(x))=Δx0limΔxv(x+Δx)u(x+Δx)v(x)u(x)=Δx0limΔxv(x)v(x+Δx)u(x+Δx)v(x)v(x+Δx)u(x)=Δx0limΔxv(x)v(x+Δx)u(x+Δx)v(x)u(x)v(x)+u(x)v(x)v(x+Δx)u(x)=Δx0limΔxv(x)v(x+Δx)v(x)Δxu(x+Δx)u(x)u(x)Δxv(x+Δx)v(x)=v2(x)u(x)v(x)u(x)v(x)
主要思路在加减项中,因为 f ( x + Δ x ) f(x+\Delta x) f(x+Δx) f ( x ) f(x) f(x)之间不能直接运算,所以要尽量凑成导数形式

三、反函数的求导法则

如果函数 x = f ( y ) x=f(y) x=f(y)在区间 I y I_y Iy内单调、可导且 f ′ ( y ) ≠ 0 f'(y)\ne0 f(y)=0,那么它的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)在区间I_x= { x ∣ x = f ( y ) , y ∈ I y } \{x|x=f(y),y\in I_y\} {xx=f(y),yIy}内也可导,且
[ f − 1 ( x ) ′ = 1 f ′ ( y ) ] 或 d y d x = 1 d x d y [f^{-1}(x)'=\frac1{f'(y)}]或\frac{dy}{dx}=\frac1{\frac{dx}{dy}} [f1(x)=f(y)1]dxdy=dydx1
简单来说:反函数的导数等于直接函数导数的倒数

例1:证明 y ∈ ( − π 2 , π 2 ) y\in(-\frac\pi2,\frac\pi2) y(2π,2π)时,函数 y = arctan ⁡ x y=\arctan x y=arctanx的导数为 1 1 + x 2 \frac1{1+x^2} 1+x21

y ∈ ( − π 2 , π 2 ) y\in(-\frac\pi2,\frac\pi2) y(2π,2π)时, y = arctan ⁡ x y=\arctan x y=arctanx的反函数为 x = tan ⁡ y x=\tan y x=tany,在 ( − π 2 , π 2 ) (-\frac\pi2,\frac\pi2) (2π,2π)内单调可导
( arctan ⁡ x ) ′ = 1 ( tan ⁡ y ) ′ = 1 sec ⁡ 2 y = 1 1 + tan ⁡ 2 y = 1 1 + x 2 (\arctan x)'=\frac1{(\tan y)}'=\frac1{\sec^2y}=\frac1{1+\tan^2y}=\frac1{1+x^2} (arctanx)=(tany)1=sec2y1=1+tan2y1=1+x21
例2:已知函数 x = x ( y ) x=x(y) x=x(y) y = e x + 2 x + sin ⁡ x y=e^x+2x+\sin x y=ex+2x+sinx所确定,求 d x d y \frac{dx}{dy} dydx
d x d y = 1 d y d x = 1 e x + 2 x + sin ⁡ x ) ′ = 1 e x + 2 + cos ⁡ x \frac {dx}{dy}=\frac1{\frac {dy}{dx}}=\frac1{e^x+2x+\sin x)'}=\frac1{e^x+2+\cos x} dydx=dxdy1=ex+2x+sinx)1=ex+2+cosx1

四、复合函数求导法则

如果 u = g ( x ) u=g(x) u=g(x)在点 x x x可导,而 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)可导,那么复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]在点 x x x可导,且导数为
d y d x = f ′ ( u ) g ′ ( x ) 或 d y d x = d y d u d u d x \frac{dy}{dx}=f'(u)g'(x)或\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx} dxdy=f(u)g(x)dxdy=dudydxdu

五、分段函数求导法则

方法:在分段点处用导数的定义求分段点的导数

例3:设函数 y = f ( x ) = { x 3 , x ≥ 0 e x 2 − 1 , x < 0 y=f(x)=\begin{cases}x^3,x\geq0\\e^{x^2}-1,x<0\end{cases} y=f(x)={x3,x0ex21,x<0,试确定函数在点 x = 0 x=0 x=0处的导数是否存在,若存在,求 f ′ ( 0 ) f'(0) f(0)
f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 + x 3 − 0 x − 0 = 0 f'_+(0)=\lim_{x\to 0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0^+}\frac{x^3-0}{x-0}=0 f+(0)=x0+limx0f(x)f(0)=x0+limx0x30=0
f − ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 − e x 2 − 1 − 0 x − 0 = lim ⁡ x → 0 − x 2 x = 0 f'_-(0)=\lim_{x\to 0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x\to0^-}\frac{e^{x^2}-1-0}{x-0}=\lim_{x\to0^-}\frac{x^2}x=0 f(0)=x0limx0f(x)f(0)=x0limx0ex210=x0limxx2=0
∵ f + ′ ( 0 ) = f − ′ ( 0 ) = 0 \because f'_+(0)=f'_-(0)=0 f+(0)=f(0)=0,故 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0

高阶导数

一、高阶导数的定义

一般地,函数 y = f ( x ) y=f(x) y=f(x)的导数 y ′ = f ′ ( x ) y'=f'(x) y=f(x)仍然是 x x x的函数,我们把 y ′ = f ′ ( x ) y'=f'(x) y=f(x)的导数叫做 y = f ( x ) y=f(x) y=f(x)的二阶导数,记作 y ′ ′ y'' y′′ d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y,即
y ′ ′ = ( y ′ ) ′ 或 d 2 y d x 2 = d d x ( d y d x ) y''=(y')'或\frac{d^2y}{dx^2}=\frac d{dx}(\frac{dy}{dx}) y′′=(y)dx2d2y=dxd(dxdy)
类似地,二阶导的导数叫做三阶导数,三阶导的导数叫做四阶导数,……,一般地, ( n − 1 ) (n-1) (n1)阶导的导数叫做 n n n阶导数,分别记作
y ′ ′ ′ , y ( 4 ) , ⋯   , y ( n ) 或 d 3 y d x 3 , d 4 y d x 4 , ⋯   , d n y d x n y''',y^{(4)},\cdots,y^{(n)}或\frac{d^3y}{dx^3},\frac{d^4y}{dx^4},\cdots,\frac{d^ny}{dx^n} y′′′,y(4),,y(n)dx3d3y,dx4d4y,,dxndny
函数 y = f ( x ) y=f(x) y=f(x)具有 n n n阶导数,也说成函数 f ( x ) f(x) f(x) n n n阶可导,二阶及二阶以上的导数统称为高阶导数

二、高阶导数的求法

1. 归纳法

对需要求高阶导数的函数公式按照求导法则多次接连的求导数,在逐次求导的过程中,找到它的某种规律,从而写出高阶导
( e x ) ( n ) = e x ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) y ( n ) = ( − 1 ) n − 1 ⋅ ( n − 1 ) ! ( 1 + x ) n \begin{aligned} (e^x)^{(n)}&=e^x\\ (\sin x)^{(n)}&=\sin(x+n\frac\pi2)\\ (\cos x)^{(n)}&=\cos(x+n\frac\pi2)\\ y^{(n)}&=\frac{(-1)^{n-1}\cdot(n-1)!}{(1+x)^n} \end{aligned} (ex)(n)(sinx)(n)(cosx)(n)y(n)=ex=sin(x+n2π)=cos(x+n2π)=(1+x)n(1)n1(n1)!

2. 分解法

将多项式进行有理式的分解后,之后再去应用归纳法

例1:求函数 1 2 x 2 − 3 x − 2 \frac1{2x^2-3x-2} 2x23x21 n n n阶导数
1 2 x 2 − 3 x − 2 = 1 ( x − 2 ) ( 2 x + 1 ) = A x − 2 + B 2 x + 1 = x ( 2 A + B ) + ( A − 2 B ) ( x − 2 ) ( 2 x + 1 ) \begin{aligned}\frac1{2x^2-3x-2}&=\frac1{(x-2)(2x+1)}\\&=\frac A{x-2}+\frac B{2x+1}\\&=\frac{x(2A+B)+(A-2B)}{(x-2)(2x+1)}\end{aligned} 2x23x21=(x2)(2x+1)1=x2A+2x+1B=(x2)(2x+1)x(2A+B)+(A2B)
{ 2 A + B = 0 A − 2 B = 0 \begin{cases}2A+B=0\\A-2B=0\end{cases} {2A+B=0A2B=0
解得
{ A = 1 5 B = − 2 5 \begin{cases}A=\frac15\\B=-\frac25\end{cases} {A=51B=52
因此
1 2 x 2 − 3 x − 2 = 1 5 1 x − 2 − 2 5 1 2 x + 1 ( 1 x − 2 ) ( n ) = ( − 1 ) n n ! ( x − 1 ) n + 1 ( 1 2 x + 1 ) ( n ) = ( − 1 ) n n ! ⋅ 2 n ( 2 x + 1 ) n + 1 ( 1 2 x 2 − 3 x − 2 ) ( n ) = ( − 1 ) n ⋅ n ! 5 [ 1 ( x − 2 ) n + 1 − 2 n + 1 ( 2 x + 1 ) n + 1 ] \begin{aligned} \frac1{2x^2-3x-2}&=\frac15\frac1{x-2}-\frac25\frac1{2x+1}\\ (\frac1{x-2})^{(n)}&=(-1)^n\frac{n!}{(x-1)^{n+1}}\\ (\frac1{2x+1})^{(n)}&=(-1)^n\frac{n!\cdot2^n}{(2x+1)^{n+1}}\\ (\frac1{2x^2-3x-2})^{(n)}&=\frac{(-1)^n\cdot n!}5[\frac1{(x-2)^{n+1}}-\frac{2^{n+1}}{(2x+1)^{n+1}}] \end{aligned} 2x23x21(x21)(n)(2x+11)(n)(2x23x21)(n)=51x21522x+11=(1)n(x1)n+1n!=(1)n(2x+1)n+1n!2n=5(1)nn![(x2)n+11(2x+1)n+12n+1]

3. 莱布尼茨法则

如果函数 u = u ( x ) u=u(x) u=u(x) v = v ( x ) v=v(x) v=v(x)都在点 x x x处具有 n n n阶导数,那么显然 u ( x ) + v ( x ) u(x)+v(x) u(x)+v(x) u ( x ) − v ( x ) u(x)-v(x) u(x)v(x)也在点 x x x处具有 n n n阶导数,且 [ u ± v ] ( n ) = u ( n ) ± v ( n ) [u\pm v]^{(n)}=u^{(n)}\pm v^{(n)} [u±v](n)=u(n)±v(n),乘积 u ( x ) ⋅ v ( x ) u(x)\cdot v(x) u(x)v(x)常用莱布尼茨公式,即
( u v ) ( n ) = C n 0 u ( n ) v + C n 1 u ( n − 1 ) v ′ + ⋯ + C n k u ( n − k ) v ( k ) + ⋯ + C n n u v ( n ) (uv)^{(n)}=C^0_nu^{(n)}v+C^1_nu^{(n-1)}v'+\cdots+C^k_nu^{(n-k)}v^{(k)}+\cdots+C^n_nuv^{(n)} (uv)(n)=Cn0u(n)v+Cn1u(n1)v++Cnku(nk)v(k)++Cnnuv(n)

( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{k=0}^nC^k_nu^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)
一般幂函数或者其他高阶导数为 0 0 0的函数作为 v ( x ) v(x) v(x)

例2:求函数 y = x 2 e 2 x y=x^2e^{2x} y=x2e2x n n n阶导数
y ( n ) = x 2 e 2 x = C n 0 ( e 2 x ) ( n ) ⋅ x 2 + C n 1 ( e 2 x ) ( n − 1 ) ⋅ 2 x + C n 2 ( e 2 x ) ( n − 2 ) ⋅ 2 = x 2 ⋅ 2 n e 2 x + n x ⋅ 2 n e 2 x + n ( n − 1 ) ⋅ 2 n − 2 e 2 x \begin{aligned}y^{(n)}&=x^2e^{2x}=C^0_n(e^{2x})^{(n)}\cdot x^2+C^1_n(e^{2x})^{(n-1)}\cdot2x+C^2_n(e^{2x})^{(n-2)}\cdot2\\&=x^2\cdot2^ne^{2x}+nx\cdot 2^{n}e^{2x}+n(n-1)\cdot2^{n-2}e^{2x}\end{aligned} y(n)=x2e2x=Cn0(e2x)(n)x2+Cn1(e2x)(n1)2x+Cn2(e2x)(n2)2=x22ne2x+nx2ne2x+n(n1)2n2e2x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值