【线性代数】行列式

二阶与三阶行列式

一、二阶行列式

记为 ∣ a 11 a 12 a 21 a 22 ∣ \begin{vmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\\ \end{vmatrix} a11a21a12a22 ,其中数 a i j ( i = 1 , 2 ; j = 1 , 2 ) a_{ij}(i=1,2;j=1,2) aij(i=1,2;j=1,2)称为上面行列式的元素或元,元素 a i j a_{ij} aij的第一个下标 i i i称为行标,表名该元素在第 i i i行,第二个下标 j j j为列标,表明该元素位于第 j j j列。位于第 i i i行第 j j j列的元素称为上面行列式的 ( i , j ) (i,j) (i,j)

例1:求 ∣ 3 5 1 6 ∣ \begin{vmatrix}3&5\\1&6\end{vmatrix} 3156 的值
∣ 3 5 1 6 ∣ = 2 × 6 − 1 × 5 = 7 \begin{vmatrix}3&5\\1&6\end{vmatrix}=2\times6-1\times5=7 3156 =2×61×5=7

二、三阶行列式

已知 ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{vmatrix}{ a _ { 11 } } & { a _ { 12 } } & { a _ { 13 } } \\ { a _ { 21 } } & { a _ { 22 } } & { a _ { 23 } } \\ { a _ { 31 } } & { a _ { 32 } } & { a _ { 33 } } \end{vmatrix} a11a21a31a12a22a32a13a23a33 ,我们把该式称为三阶行列式

例2:计算三阶行列式 D = ∣ 1 2 − 4 − 2 2 1 − 3 4 − 2 ∣ D=\begin{vmatrix} { 1 } & { 2 } & { - 4 } \\ { - 2 } & { 2 } & { 1 } \\ { - 3 } & { 4 } & { - 2 } \end{vmatrix} D= 123224412
D = 1 × 2 × ( − 2 ) + ( − 3 ) × 2 × 1 + ( − 4 ) × ( − 2 ) × 4 − ( − 4 ) × 2 × ( − 3 ) − 1 × 4 × 1 − ( − 2 ) × 2 × ( − 2 ) = − 14 D=1\times2\times(-2)+(-3)\times2\times1+(-4)\times(-2)\times4-(-4)\times2\times(-3)-1\times4\times1-(-2)\times2\times(-2)=-14 D=1×2×(2)+(3)×2×1+(4)×(2)×4(4)×2×(3)1×4×1(2)×2×(2)=14

全排列及其逆序数

1. 全排列的定义

n n n个不同的元素排成一列,叫做这 n n n个元素的全排列(也简称排列)

2. 逆序数的定义

对于 n n n个不同的元素,先规定个元素之间有一个标准次序(例如 n n n个不同的自然数,可规定由小到大为标准次序),于是在这 n n n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有 1 1 1个逆序。一个排列中所有逆序的总数叫做这个排列的逆序数

3. 奇排列和偶排列

逆序数为奇数的排列叫做奇排列,逆序数叫做偶数的排列叫做偶排列

例1:求排列 32516 32516 32516的逆序数
1 + 0 + 3 + 1 = 5 1+0+3+1=5 1+0+3+1=5

n阶行列式的定义

定义:设有 n 2 n^2 n2个数,排成 n n n n n n a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n \begin{matrix}{ a _ { 11 } } & { a _ { 12 } } & { \cdots } & { a _ { 1 n } } \\ { a _ { 21 } } & { a _ { 22 } } & { \cdots } & { a _ { 2 n } } \\ { \vdots } & { \vdots } & { } & { \vdots } \\ { a _ { n 1 } } &{ a _ { n 2 } } & { \cdots } & { a _ { n n }}\end{matrix} a11a21an1a12a22an2a1na2nann,作出表中位于不同行不同列的 n n n个数的乘积,由于这样的排列共有 n ! n! n!个,所有这 n ! n! n!项的代数和 ∑ ( − 1 ) t a 1 p 1 a 2 p 2 ⋯ a n p n \sum(-1)^ta_{1p_1}a_{2p_2}\cdots a_{np_n} (1)ta1p1a2p2anpn n n n阶行列式记作 D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\begin{vmatrix}{ a _ { 11 } } & { a _ { 12 } } & { \cdots } & { a _ { 1 n } } \\ { a _ { 21 } } & { a _ { 22 } } & { \cdots } & { a _ { 2 n } } \\ { \vdots } & { \vdots } & { } & { \vdots } \\ { a _ { n 1 } } &{ a _ { n 2 } } & { \cdots } & { a _ { n n }}\end{vmatrix} D= a11a21an1a12a22an2a1na2nann ,简称作 d e t ( a i j ) det(a_{ij}) det(aij),其中数 a i j a_{ij} aij为行列式 D D D ( i , j ) (i,j) (i,j)

例1:证明以下 n n n阶行列式的值,其中未写出的元素都是 0 0 0
∣ λ 1 λ 2 ⋱ λ n ∣ = λ 1 λ 2 ⋯ λ n \begin{vmatrix}\lambda_1&&&\\&\lambda_2&&\\&&\ddots&\\&&&\lambda_n\end{vmatrix}=\lambda_1\lambda_2\cdots\lambda_n λ1λ2λn =λ1λ2λn
∣ λ 1 λ 2 ⋯ λ n ∣ = ( − 1 ) n ( n − 1 ) 2 λ 1 λ 2 ⋯ λ n \begin{vmatrix}&&&\lambda_1\\&&\lambda_2&\\&\cdots&&\\\lambda_n&&&\end{vmatrix}=(-1)^\frac{n(n-1)}{2}\lambda_1\lambda_2\cdots\lambda_n λnλ2λ1 =(1)2n(n1)λ1λ2λn
同理
主对角线上三角矩阵 = = =主对角线下三角矩阵 = = =主对角线矩阵 = a 11 a 22 ⋯ a n n =a_{11}a_{22}\cdots a_{nn} =a11a22ann
副对角线上三角矩阵 = = =副对角线下三角矩阵 = = =副对角线矩阵 = ( − 1 ) n ( n − 1 ) 2 a n 1 a ( n − 1 ) 2 ⋯ a 1 n =(-1)^{\frac{n(n-1)}{2}}a_{n1}a_{(n-1)2}\cdots a_{1n} =(1)2n(n1)an1a(n1)2a1n

行列式的性质

性质1:行列式与它的转置行列式相等

性质2:互换行列式的两行(列),行列式变号

推论:如果行列式有两行(列)完全相同,则此行列式等于零

性质3:行列式的某一行(列)中所有的元素都乘以同一数 k k k,等于用 k k k乘以此行列式

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零

性质5:若行列式的某一列(行)的元素都是两数之和,例如第i列的元素都是两数之和: D = ∣ a 11 a 12 ⋯ ( a 1 i + a 1 i ′ ) ⋯ a 1 n a 21 a 22 ⋯ ( a 2 i + a 2 i ′ ) ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ ( a n i + a n i ′ ) ⋯ a n n ∣ D=\begin{vmatrix}a_{11}&a_{12}&\cdots&(a_{1i}+a_{1i}')&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&(a_{2i}+a_{2i}')&\cdots&a_{2n}\\\vdots&\vdots&&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&(a_{ni}+a_{ni}')&\cdots&a_{nn}\end{vmatrix} D= a11a21an1a12a22an2(a1i+a1i)(a2i+a2i)(ani+ani)a1na2nann D = ∣ a 11 a 12 ⋯ a 1 i ⋯ a 1 n a 21 a 22 ⋯ a 2 i ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n i ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 i ′ ⋯ a 1 n a 21 a 22 ⋯ a 2 i ′ ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n i ′ ⋯ a n n ∣ D=\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n}\\a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n}\\ \vdots & \vdots&&\vdots&&\vdots\\a_{n1} & a_{n2} & \cdots&a_{ni}&\cdots&a_{nn}\end{vmatrix}+\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1i}'&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots &a_{2i}'&\cdots&a_{2n}\\\vdots&\vdots&&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{ni}'&\cdots&a_{nn}\end{vmatrix} D= a11a21an1a12a22an2a1ia2iania1na2nann + a11a21an1a12a22an2a1ia2iania1na2nann

性质6:把行列式的某一列(行)的该元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变

例1:计算 ∣ a b ⋯ b b a ⋯ b ⋮ ⋮ ⋮ b b ⋯ a ∣ n × n \begin{vmatrix}a&b&\cdots&b\\b&a&\cdots&b\\\vdots&\vdots&&\vdots\\b&b&\cdots&a\end{vmatrix}_{n\times n} abbbabbba n×n
∣ a b ⋯ b b a ⋯ b ⋮ ⋮ ⋮ b b ⋯ a ∣ n × n = ∣ [ a + ( n − 1 ) b ] [ a + ( n − 1 ) b ] ⋯ [ a + ( n − 1 ) b ] b a ⋯ b ⋮ ⋮ ⋮ b b ⋯ a ∣ = [ a + ( n − 1 ) b ] ∣ 1 1 ⋯ 1 b a ⋯ b ⋮ ⋮ ⋮ b b ⋯ a ∣ = [ a + ( n − 1 ) b ] ∣ 1 1 ⋯ 1 0 a − b ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ a − b ∣ = [ a + ( n − 1 ) b ] ( a − b ) n − 1 \begin{aligned}\begin{vmatrix}a&b&\cdots&b\\b&a&\cdots&b\\\vdots&\vdots&&\vdots\\b&b&\cdots&a\end{vmatrix}_{n\times n}&=\begin{vmatrix}[a+(n-1)b]&[a+(n-1)b]&\cdots&[a+(n-1)b]\\b&a&\cdots&b\\\vdots&\vdots&&\vdots\\b&b&\cdots&a\end{vmatrix}\\&=[a+(n-1)b]\begin{vmatrix}1&1&\cdots&1\\b&a&\cdots&b\\\vdots&\vdots&&\vdots\\b&b&\cdots&a\end{vmatrix}\\&=[a+(n-1)b]\begin{vmatrix}1&1&\cdots&1\\0&a-b&\cdots&0\\\vdots&\vdots&&\vdots\\0&0&\cdots&a-b\end{vmatrix}\\&=[a+(n-1)b](a-b)^{n-1}\end{aligned} abbbabbba n×n= [a+(n1)b]bb[a+(n1)b]ab[a+(n1)b]ba =[a+(n1)b] 1bb1ab1ba =[a+(n1)b] 1001ab010ab =[a+(n1)b](ab)n1

例2:设 D = ∣ a 11 ⋯ a 1 k ⋮ ⋮ 0 a k 1 ⋯ a k k c 11 ⋯ c 1 k b 11 ⋯ b 1 n ⋮ c n 1 ⋯ c n k b n 1 ⋯ b n n ∣ , D 1 = det ⁡ ( a i j ) = ∣ a 11 ⋯ a 1 k ⋮ ⋮ a k 1 ⋯ a k k ∣ , D 2 = det ⁡ ( b i j ) = ∣ b 11 ⋯ b 1 n ⋮ ⋮ b n 1 ⋯ b n n ∣ D=\begin{vmatrix}a_{11}&\cdots&a_{1k}\\\vdots&&\vdots&&0&\\a_{k1}&\cdots&a_{kk}\\c_{11}&\cdots&c_{1k}&b_{11}&\cdots&b_{1n}\\\vdots\\c_{n1}&\cdots&c_{nk}&b_{n1}&\cdots&b_{nn}\end{vmatrix},D_{1}=\det(a_{ij})=\begin{vmatrix}a_{11}&\cdots&a_{1k}\\\vdots&&\vdots\\a_{k1}&\cdots&a_{kk}\end{vmatrix},D_2=\det(b_{ij})=\begin{vmatrix}b_{11}&\cdots&b_{1n}\\\vdots&&\vdots\\b_{n1}&\cdots&b_{nn}\end{vmatrix} D= a11ak1c11cn1a1kakkc1kcnkb11bn10b1nbnn ,D1=det(aij)= a11ak1a1kakk ,D2=det(bij)= b11bn1b1nbnn
证明 D = D 1 D 2 D=D_1D_{2} D=D1D2
D 1 = 行变换 ∣ D 11 ⋯ 0 ⋮ ⋱ ⋮ D k 1 ⋯ D k k ∣ = D 11 ⋯ D k k D_{1}\overset{\text{行变换}}{=}\begin{vmatrix}D_{11}&\cdots&0\\\vdots&\ddots&\vdots\\D_{k1}&\cdots&D_{kk}\end{vmatrix}=D_{11}\cdots D_{kk} D1=行变换 D11Dk10Dkk =D11Dkk(前 k k k行进行行变换)
D 2 = 列变换 ∣ q 11 ⋯ 0 ⋮ ⋱ ⋮ q n 1 ⋯ q n n ∣ = q 11 ⋯ q n n D_2\overset{\text{列变换}}{=}\begin{vmatrix}q_{11}&\cdots&0\\\vdots&\ddots&\vdots\\q_{n1}&\cdots&q_{nn}\end{vmatrix}=q_{11}\cdots q_{nn} D2=列变换 q11qn10qnn =q11qnn(右 k k k列进行列变换)
D = ∣ D 11 ⋮ ⋱ D k 1 ⋯ D k k C 11 ⋯ C 1 k q 11 ⋮ ⋮ ⋮ ⋱ C n 1 ⋯ C n k q n 1 ⋯ q n n ∣ = D 11 ⋯ D k k q 11 ⋯ q n n = D 1 D 2 D=\begin{vmatrix}D_{11}\\\vdots&\ddots\\D_{k1}&\cdots&D_{kk}\\C_{11}&\cdots&C_{1k}&q_{11}\\\vdots&&\vdots&\vdots&\ddots\\C_{n1}&\cdots&C_{nk}&q_{n1}&\cdots&q_{nn}\end{vmatrix}=D_{11}\cdots D_{kk}q_{11}\cdots q_{nn}=D_{1}D_2 D= D11Dk1C11Cn1DkkC1kCnkq11qn1qnn =D11Dkkq11qnn=D1D2

D = ∣ D 1 0 D 3 D 2 ∣ = D 1 ⋅ D 2 D=\begin{vmatrix}D_{1}&0\\D_{3}&D_{2}\end{vmatrix}=D_{1}\cdot D_{2} D= D1D30D2 =D1D2,同理有 D = ∣ 0 D 1 n × n D 2 m × m D 3 ∣ = ( − 1 ) m n D 1 ⋅ D 2 D=\begin{vmatrix}0&D_{1_{n\times n}}\\D_{2_{m\times m}}&D_{3}\end{vmatrix}=(-1)^{mn}D_{1}\cdot D_{2} D= 0D2m×mD1n×nD3 =(1)mnD1D2

行列式按行(列)展开

一、代数余子式的定义

n n n阶行列式中,把 ( i , j ) (i,j) (i,j) a i j a_{ij} aij所在的第 i i i行和第 j j j列划去后,留下来的 n − 1 n-1 n1阶行列式叫做 ( i , j ) (i,j) (i,j) a i j a_{ij} aij的余子式,记作 M i j M_{ij} Mij;记 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij A i j A_{ij} Aij叫做 ( i , j ) (i,j) (i,j) a i j a_{ij} aij的代数余子式

定理1:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n ( i = 1 , 2 , ⋯   , n ) D = a _ { i 1 } A _ { i 1 } + a _ { i 2 } A _ { i 2 } + \cdots + a _ { i n } A _ { i n } ( i = 1 , 2 , \cdots , n ) D=ai1Ai1+ai2Ai2++ainAin(i=1,2,,n) D = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j ( j = 1 , 2 , ⋯   , n ) D = a _ { 1 j } A _ { 1 j } + a _ { 2 j } A _ { 2 j } + \cdots + a _ { n j } A _ { n j } ( j = 1 , 2 , \cdots , n ) D=a1jA1j+a2jA2j++anjAnj(j=1,2,,n)

例1:用展开定理求行列式 ∣ 3 1 − 1 2 − 5 1 3 − 4 2 0 1 − 1 1 − 5 3 − 3 ∣ \begin{vmatrix}3&1&-1&2\\-5&1&3&-4\\2&0&1&-1\\1&-5&3&-3\end{vmatrix} 3521110513132413 的值
∣ 3 1 − 1 2 − 5 1 3 − 4 2 0 1 − 1 1 − 5 3 − 3 ∣ = ∣ 5 1 − 1 1 − 11 1 3 − 1 0 0 1 0 − 5 − 5 3 0 ∣ = 1 × ( − 1 ) 3 + 3 ∣ 5 1 1 − 11 1 − 1 − 5 − 5 0 ∣ = ∣ 5 1 1 − 6 2 0 − 5 − 5 0 ∣ = 1 × ( − 1 ) 1 + 3 ∣ − 6 2 − 5 − 5 ∣ = 40 \begin{aligned}\begin{vmatrix}3&1&-1&2\\-5&1&3&-4\\2&0&1&-1\\1&-5&3&-3\end{vmatrix}&=\begin{vmatrix}5&1&-1&1\\-11&1&3&-1\\0&0&1&0\\-5&-5&3&0\end{vmatrix}\\&=1\times(-1)^{3+3}\begin{vmatrix}5&1&1\\-11&1&-1\\-5&-5&0\end{vmatrix}\\&=\begin{vmatrix}5&1&1\\-6&2&0\\-5&-5&0\end{vmatrix}\\&=1\times(-1)^{1+3}\begin{vmatrix}-6&2\\-5&-5\end{vmatrix}\\&=40\end{aligned} 3521110513132413 = 51105110513131100 =1×(1)3+3 5115115110 = 565125100 =1×(1)1+3 6525 =40

推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零 a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = 0 , i ≠ j a _ { i 1 } A _ { j 1 } + a _ { i 2 } A _ { j 2 } + \cdots + a _ { i n } A _ { j n } = 0 , \quad i \neq j ai1Aj1+ai2Aj2++ainAjn=0,i=j a 1 i A 1 j + a 2 i A 2 j + ⋯ + a n i = 0 , i ≠ j a _ { 1 i } A _ { 1 j } + a _ { 2 i } A _ { 2 j } + \cdots + a _ { n i } = 0 , \quad i \neq j a1iA1j+a2iA2j++ani=0,i=j

例2:设 D = ∣ 3 − 5 2 1 1 1 0 − 5 − 1 3 1 3 2 − 4 − 1 − 3 ∣ D=\begin{vmatrix}3&-5&2&1\\1&1&0&-5\\-1&3&1&3\\2&-4&-1&-3\end{vmatrix} D= 3112513420111533 D D D ( i , j ) (i,j) (i,j)元的余子式和代数余子式依次记作 M i j M_{ij} Mij A i j A_{ij} Aij,求 A 11 + A 12 + A 13 + A 14 A_{11}+A_{12}+A_{13}+A_{14} A11+A12+A13+A14 M 11 + M 21 + M 31 + M 41 M_{11}+M_{21}+M_{31}+M_{41} M11+M21+M31+M41
1 ⋅ A 11 + 1 ⋅ A 12 + 1 ⋅ A 13 + 1 ⋅ A 14 = ∣ 1 1 1 1 1 1 0 − 5 − 1 3 1 3 2 − 4 − 1 − 3 ∣ = 4 1\cdot A_{11}+1\cdot A_{12}+1\cdot A_{13}+1\cdot A_{14}=\begin{vmatrix}1&1&1&1\\1&1&0&-5\\-1&3&1&3\\2&-4&-1&-3\end{vmatrix}=4 1A11+1A12+1A13+1A14= 1112113410111533 =4
M 11 + M 21 + M 31 + M 41 = 1 ⋅ A 11 + ( − 1 ) ⋅ A 21 + 1 ⋅ A 31 + ( − 1 ) ⋅ A 41 = ∣ 1 − 5 2 1 − 1 1 0 − 5 1 3 1 3 − 1 − 4 − 1 − 3 ∣ = 0 \begin{aligned}M_{11}+M_{21}+M_{31}+M_{41}&=1\cdot A_{11}+(-1)\cdot A_{21}+1\cdot A_{31}+(-1)\cdot A_{41}\\&=\begin{vmatrix}1&-5&2&1\\-1&1&0&-5\\1&3&1&3\\-1&-4&-1&-3\end{vmatrix}\\&=0\end{aligned} M11+M21+M31+M41=1A11+(1)A21+1A31+(1)A41= 1111513420111533 =0

克拉默法则

含有 n n n个未知数 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn n n n个线性方程组 { a 11 x 1 + a 21 x 2 + ⋯ + a n x n = b 1 , a 21 x 1 + a 21 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ a 1 n x 1 + a 2 n x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_{1}+a_{21}x_{2}+\cdots+a_{n}x_{n}=b_{1}, \\ a_{21}x_{1}+a_{21}x_{2}+\cdots+a_{2n}x_{n}=b_{2}, \\ \cdots \\ a_{1n}x_{1}+a_{2n}x_{2}+\cdots+a_{nn}x_{n}=b_{n}\\ \end{cases} a11x1+a21x2++anxn=b1,a21x1+a21x2++a2nxn=b2,a1nx1+a2nx2++annxn=bn与二、三元线性方程组相类似,它的解可以用 n n n阶行列式表示

克拉默法则:如果线性方程组的系数行列式不为零,即 D = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ ≠ 0 D=\begin{vmatrix} a_{11}&\cdots&a_{1n}\\\vdots&&\vdots\\a_{n1}&\cdots&a_{nn} \end{vmatrix}\ne 0 D= a11an1a1nann =0那么方程组有唯一解 x 1 = D 1 D , x 2 = D 2 D , ⋯   , x n = D n D x_{1}=\frac{D_{1}}{D},x_2=\frac{D_{2}}{D},\cdots,x_n=\frac{D_{n}}{D} x1=DD1,x2=DD2,,xn=DDn,其中 D j ( j = 1 , 2 , ⋯   , n ) D_{j}(j=1,2,\cdots,n) Dj(j=1,2,,n)是把系数行列式 D D D中第 j j j列的元素方程组右端的常数项代替后所得到的 n n n阶行列式,即 D j = ∣ a 11 ⋯ a 1 , j − 1 b 1 a 1 , j + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , j − 1 b n a n , j + 1 ⋯ a n n ∣ D_{j}=\begin{vmatrix} a_{11}&\cdots&a_{1,j-1}&b_{1}&a_{1,j+1}&\cdots&a_{1n}\\\vdots&&\vdots&\vdots&\vdots&&\vdots\\a_{n1}&\cdots&a_{n,j-1}&b_{n}&a_{n,j+1}&\cdots&a_{nn} \end{vmatrix} Dj= a11an1a1,j1an,j1b1bna1,j+1an,j+1a1nann

例1:解线性方程组 { 2 x 1 + x 2 − 5 x 3 + x 4 = 8 x 1 − 3 x 2 − 6 x 4 = 9 2 x 2 − x 3 + 2 x 4 = − 5 x 1 + 4 x 2 − 7 x 3 + 6 x 4 = 0 \begin{cases}2x_1+x_2-5x_3+x_4=8\\x_1-3x_2-6x_4=9\\2x_2-x_3+2x_4=-5\\x_1+4x_2-7x_3+6x_4=0\end{cases} 2x1+x25x3+x4=8x13x26x4=92x2x3+2x4=5x1+4x27x3+6x4=0

D = ∣ 2 1 − 5 1 1 − 3 0 − 6 0 2 − 1 2 1 4 − 7 6 ∣ = 27 ≠ 0 D=\begin{vmatrix}2&1&-5&1\\1&-3&0&-6\\0&2&-1&2\\1&4&-7&6\end{vmatrix}=27\ne0 D= 2101132450171626 =27=0
D 1 = ∣ 8 1 − 5 1 9 − 3 0 − 6 − 5 2 − 1 2 0 4 − 7 6 ∣ = 81 D_1=\begin{vmatrix}8&1&-5&1\\9&-3&0&-6\\-5&2&-1&2\\0&4&-7&6\end{vmatrix}=81 D1= 8950132450171626 =81
同理 D 2 = − 108 , D 3 = − 27 , D 4 = 27 D_2=-108,D_3=-27,D_4=27 D2=108,D3=27,D4=27
x 1 = D 1 D = 3 , x 2 = − 4 , x 3 = − 1 , x 4 = 1 x_1=\frac{D_{1}}{D}=3,x_2=-4,x_3=-1,x_4=1 x1=DD1=3,x2=4,x3=1,x4=1

定理1:如果线性方程组的系数方程式 D ≠ 0 D\ne0 D=0,则线性方程组一定有解,且解是唯一的
定理2:如果齐次方程组的系数行列式 D ≠ 0 D\ne0 D=0,则齐次方程组没有非零解,即只有零解;反之,如果齐次方程组的系数行列式 D = 0 D=0 D=0,则齐次方程组有非零解

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值