【线性代数基础进阶】线性方程组-part1

{a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0⋯am1x1+am2x2+⋯+amnxn=0\begin{cases}a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=0\\a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=0\\\cdots\\a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}=0\end{cases}⎩⎨⎧​a11​x1​+a12​x2​+⋯+a
摘要由CSDN通过智能技术生成

A x = 0 Ax=0 Ax=0

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 \begin{cases}a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=0\\a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=0\\\cdots\\a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}=0\end{cases} a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0 x 1 = 0 , x 2 = 0 , ⋯   , x n = 0 x_{1}=0,x_{2}=0,\cdots,x_{n}=0 x1=0,x2=0,,xn=0必定是 A x = 0 Ax=0 Ax=0的解,称为零解

定理: A m × n x = 0 A_{m\times n}x=0 Am×nx=0有非零解
⇔ r ( A ) < n \Leftrightarrow r(A)<n r(A)<n
⇔ A \Leftrightarrow A A的列向量组线性相关

推论:

  1. m < n m<n m<n时, A x = 0 Ax=0 Ax=0必有非零解
  2. m = n m=n m=n时, A x = 0 Ax=0 Ax=0有非零解 ⇔ ∣ A ∣ = 0 \Leftrightarrow |A|=0 A=0

定理:若 A x = 0 Ax=0 Ax=0系数矩阵的秩 r ( A ) = r < n r(A)=r<n r(A)=r<n,则 A x = 0 Ax=0 Ax=0 n − r n-r nr个线性无关的解,且 A x = 0 Ax=0 Ax=0的任一一个阶都可由着 n − r n-r nr个线性无关的解线性表出

如果 η 1 , η 2 \eta_{1},\eta_{2} η1,η2 A x = 0 Ax=0 Ax=0的解
A η 1 = 0 , A η 2 = 0 A \eta_{1}=0,A \eta_{2}=0 Aη1=0,Aη2=0
那么
A ( k 1 η 1 + k 2 η 2 ) = k 1 A η 1 + k 2 A η 2 = 0 A(k_{1}\eta_{1}+k_{2}\eta_{2})=k_{1}A \eta_{1}+k_{2}A \eta_{2}=0 A(k1η1+k2η2)=k1Aη1+k2Aη2=0
k 1 η 1 + k 2 η 2 k_{1}\eta_{1}+k_{2}\eta_{2} k1η1+k2η2 A x = 0 Ax=0 Ax=0的解
定理:若 η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt A x = 0 Ax=0 Ax=0的基础解系,则齐次方程组 A x = 0 Ax=0 Ax=0的通解为:
k 1 η 1 + k 2 η 2 + ⋯ + k t η t k_{1}\eta_{1}+k_{2}\eta_{2}+\cdots+k_{t}\eta_{t} k1η1+k2η2++ktηt
k 1 , k 2 , ⋯   , k t k_{1},k_{2},\cdots,k_{t} k1,k2,,kt是任意常数

定义: A x = 0 Ax=0 Ax=0的基础解系是指,如果 η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt A x = 0 Ax=0 Ax=0的解,且满足

  • η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt线性无关
  • A x = 0 Ax=0 Ax=0的任一解都可由 η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt线性表出

则称 η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt A x = 0 Ax=0 Ax=0的一个基础解系

例: { 5 x 1 + 7 x 2 + 2 x 3 = 0 3 x 1 + 5 x 2 + 6 x 3 − 4 x 4 = 0 4 x 1 + 5 x 2 − 2 x 3 + 3 x 4 \begin{cases}5x_{1}+7x_{2}+2x_{3}=0\\ 3x_{1}+5x_{2}+6x_{3}-4x_{4}=0\\ 4x_{1}+5x_{2}-2x_{3}+3x_{4}\end{cases} 5x1+7x2+2x3=03x1+5x2+6x34x4=04x1+5x22x3+3x4求基础解系,通解

对系数矩阵作初等行变换
A = ( 5 7 2 0 3 5 6 − 4 4 5 − 2 3 ) → ( 1 0 − 8 7 0 1 6 − 5 0 0 0 0 ) A=\begin{pmatrix} 5 & 7 & 2 & 0 \\ 3 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -8 & 7 \\ 0 & 1 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{pmatrix} A= 534755262043 100010860750
n − r ( A ) = 4 − 2 = 2 n-r(A)=4-2=2 nr(A)=42=2
同解方程组
{ x 1 − 8 x 3 + 7 x 4 = 0 x 2 + 6 x 3 − 5 x 4 = 0 \begin{cases} x_{1}-8x_{3}+7x_{4}=0 \\ x_{2}+6x_{3}-5x_{4}=0 \end{cases} { x18x3+7x4=0x2+6x35x4=0

可以用 0 , 1 0,1 0,1


{ x 1 = 8 x 3 − 7 x 4 x 2 = − 6 x 3 + 5 x 4 \begin{cases} x_{1}=8x_{3}-7x_{4} \\ x_{2}=-6x_{3}+5x_{4} \end{cases} { x1=8x37x4x2=6x3+5x4
x 3 = 1 , x 4 = 0 ⇒ x 2 = − 6 , x 1 = 8 x_{3}=1,x_{4}=0\Rightarrow x_{2}=-6,x_{1}=8 x3=1,x4=0x2=6,x1=8
x 3 = 0 , x 4 = 1 ⇒ x 2 = 5 , x 1 = − 7 x_{3}=0,x_{4}=1\Rightarrow x_{2}=5,x_{1}=-7 x3=0,x4=1x2=5,x1=7
基础解系为
η 1 = ( 8 , − 6 , 1 , 0 ) T , η 2 = ( − 7 , 5 , 0 , 1 ) T \eta_{1}=(8,-6,1,0)^{T},\eta_{2}=(-7,5,0,1)^{T} η1=(8,6,1,0)T,η2=(7,5,0,1)T
通解
k 1 η 1 + k 2 η 2 , k 1 , k 2 为任意常数 k_{1}\eta_{1}+k_{2}\eta_{2},k_{1},k_{2}为任意常数 k1η1+k2η2,k1,k2为任意常数

也可以用提参数的方法

x 3 = t , x 4 = u x_{3}=t,x_{4}=u x3=t,x4=u,即
{ x 1 = 8 t − 7 u x 2 = − 6 t + 5 u x 3 = t x 4 = u u , v 为任意常数 \begin{cases} x_{1}=8t-7u \\ x_{2}=-6t+5u \\ x_{3}=t \\ x_{4}=u \end{cases}\quad u,v为任意常数 x1=8t7ux2=6t+5ux3=tx4=uu,v为任意常数
因此
x = t ( 8 − 6 1 0 ) + u ( − 7 5 0 1 ) x=t \begin{pmatrix} 8 \\ -6 \\ 1 \\ 0 \end{pmatrix}+u \begin{pmatrix} -7 \\ 5 \\ 0 \\ 1 \end{pmatrix} x=t 8610 +u 7501

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值