【线性代数基础进阶】线性方程组-part2

文章目录

方程组的应用

例:求和矩阵 A = ( 1 2 − 1 3 ) A=\begin{pmatrix}1 & 2 \\ -1 & 3\end{pmatrix} A=(1123)可交换矩阵

X = ( x 1 x 2 x 3 x 4 ) X=\begin{pmatrix}x_{1} & x_{2} \\ x_{3} & x_{4}\end{pmatrix} X=(x1x3x2x4) A A A可交换,即 A X = X A AX=XA AX=XA
( 1 2 − 1 3 ) ( x 1 x 2 x 3 x 4 ) = ( x 1 x 2 x 3 x 4 ) ( 1 2 − 1 3 ) ( x 1 + 2 x 3 x 2 + 2 x 4 − x 1 + 3 x 3 − x 2 + 3 x 4 ) = ( x 1 − x 2 2 x 1 + 3 x 2 x 3 − x 4 2 x 3 + 3 x 4 ) \begin{aligned} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}\begin{pmatrix}x_{1} & x_{2} \\ x_{3} & x_{4}\end{pmatrix}&=\begin{pmatrix}x_{1} & x_{2} \\ x_{3} & x_{4}\end{pmatrix}\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}\\ \begin{pmatrix} x_{1}+2x_{3} & x_{2}+2x_{4} \\ -x_{1}+3x_{3} & -x_{2}+3x_{4} \end{pmatrix}&=\begin{pmatrix} x_{1}-x_{2} & 2x_{1}+3x_{2} \\ x_{3}-x_{4} & 2x_{3}+3x_{4} \end{pmatrix} \end{aligned} (1123)(x1x3x2x4)(x1+2x3x1+3x3x2+2x4x2+3x4)=(x1x3x2x4)(1123)=(x1x2x3x42x1+3x22x3+3x4)
即有
{ x 2 + 2 x 3 = 0 2 x 1 + 2 x 2 − 2 x 4 = 0 − x 1 + 2 x 3 + x 4 = 0 x 2 + 2 x 3 = 0 \begin{cases} x_{2}+2x_{3}=0 \\ 2x_{1}+2x_{2}-2x_{4}=0 \\ -x_{1}+2x_{3}+x_{4}=0 \\ x_{2}+2x_{3}=0 \end{cases} x2+2x3=02x1+2x22x4=0x1+2x3+x4=0x2+2x3=0
系数矩阵
B = ( 0 1 2 0 2 2 0 − 2 − 1 0 2 1 0 1 2 0 ) → ( 1 0 − 2 − 1 0 1 2 0 0 0 0 0 0 0 0 0 ) B=\begin{pmatrix} 0 & 1 & 2 & 0 \\ 2 & 2 & 0 & -2 \\ -1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} B= 0210120120220210 1000010022001000

结果是为了求矩阵一般用提参数的方法,而不是 0 , 1 0,1 0,1

自由变量 x 3 , x 4 x_{3},x_{4} x3,x4,令 x 3 = t , x 4 = u x_{3}=t,x_{4}=u x3=t,x4=u
x 1 = 2 t + u , x 2 = − 2 t x_{1}=2t+u,x_{2}=-2t x1=2t+u,x2=2t
因此
X = ( 2 t + u − 2 t t u ) t , u 为任意常数 X=\begin{pmatrix} 2t+u & -2t \\ t & u \end{pmatrix}\quad t,u 为任意常数 X=(2t+ut2tu)t,u为任意常数

例: ( 1 2 3 2 3 4 ) X = ( 4 5 5 6 ) \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 4\end{pmatrix}X=\begin{pmatrix}4 & 5 \\ 5 & 6\end{pmatrix} (122334)X=(4556),则 X = ( ) X=() X=()

如果 ( 1 2 3 2 3 4 ) \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 4\end{pmatrix} (122334)为方阵且可逆,则只需要左乘其逆矩阵即可,但本题显然不可逆

由题意得 X 3 × 2 X_{3\times2} X3×2
( 1 2 3 2 3 4 ) ( x 1 y 1 x 2 y 2 x 3 y 3 ) = ( 4 5 5 6 ) \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 4\end{pmatrix}\begin{pmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ x_{3} & y_{3} \end{pmatrix}=\begin{pmatrix}4 & 5 \\ 5 & 6\end{pmatrix} (122334) x1x2x3y1y2y3 =(4556)

此处考虑到 X X X不同列乘积最后形成的系数矩阵相同,所以考虑不同列设成不同组未知数。
如果统一设成 x 1 , x 2 , ⋯   , x 6 x_{1},x_{2},\cdots,x_{6} x1,x2,,x6也能做出来,计算难度相差不大

可得
{ x 1 + 2 x 2 + 3 x 3 = 4 2 x 1 + 3 x 2 + 4 x 3 = 5 { y 1 + 2 y 2 + 3 y 3 = 5 2 y 1 + 3 y 2 + 4 y 3 = 6 \begin{cases} x_{1}+2x_{2}+3x_{3}=4 \\ 2x_{1}+3x_{2}+4x_{3}=5 \end{cases}\quad \begin{cases} y_{1}+2y_{2}+3y_{3}=5 \\ 2y_{1}+3y_{2}+4y_{3}=6 \end{cases} {x1+2x2+3x3=42x1+3x2+4x3=5{y1+2y2+3y3=52y1+3y2+4y3=6
系数矩阵相同,可得大的增广矩阵
( 1 2 3 4 5 2 3 4 5 6 ) → ( 1 0 − 1 − 2 − 3 1 2 3 4 ) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 & -3 \\ & 1 & 2 & 3 & 4 \end{pmatrix} (1223344556)(101122334)

{ x 1 = − 2 + k 1 x 2 = 3 − 2 k 1 x 3 = k 1 { y 1 = − 3 + k 2 y 2 = 4 − 2 k 2 y 3 = k 2 \begin{cases} x_{1}=-2+k_{1} \\ x_{2}=3-2k_{1} \\ x_{3}=k_{1} \end{cases}\quad \begin{cases} y_{1}=-3+k_{2} \\ y_{2}=4-2k_{2} \\ y_{3}=k_{2} \end{cases} x1=2+k1x2=32k1x3=k1 y1=3+k2y2=42k2y3=k2
因此,可得
X = ( − 2 k 1 − 3 + k 2 3 − 2 k 1 4 − 2 k 2 k 1 k 2 ) k 1 , k 2 为任意常数 X=\begin{pmatrix} -2k_{1} & -3+k_{2} \\ 3-2k_{1} & 4-2k_{2} \\ k_{1} & k_{2} \end{pmatrix}\quad k_{1},k_{2}为任意常数 X= 2k132k1k13+k242k2k2 k1,k2为任意常数

例:设 α 1 = ( a , 2 , 10 ) T , α 2 = ( − 2 , 1 , 5 ) T , α 3 = ( − 1 , 1 , 4 ) T , β = ( 1 , b , c ) T \alpha_{1}=(a,2,10)^{T},\alpha_{2}=(-2,1,5)^{T},\alpha_{3}=(-1,1,4)^{T},\beta=(1,b,c)^{T} α1=(a,2,10)T,α2=(2,1,5)T,α3=(1,1,4)T,β=(1,b,c)T,求 a , b , c a,b,c a,b,c满足的条件

  1. β \beta β可由 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性表出,且表示方法唯一
  2. β \beta β不能由 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性表出
  3. β \beta β可由 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性表出但表示方法不唯一,并写出一般表达式

x 1 α 2 + x 2 α 3 + x 3 α 3 = β (1) x_{1}\alpha_{2}+x_{2}\alpha_{3}+x_{3}\alpha_{3}=\beta\tag{1} x1α2+x2α3+x3α3=β(1)

∣ A ∣ = ∣ α 1 α 2 α 3 ∣ = ∣ a − 2 − 1 2 1 1 10 5 4 ∣ = − ( a + 4 ) |A|=\begin{vmatrix} \alpha_{1}&\alpha_{2}&\alpha_{3} \end{vmatrix}=\begin{vmatrix} a&-2&-1\\2&1&1\\10&5&4 \end{vmatrix}=-(a+4) A= α1α2α3 = a210215114 =(a+4)
因此,
a ≠ − 4 a\ne-4 a=4时, ∣ A ∣ ≠ 0 |A|\ne0 A=0,方程组有唯一解, β \beta β可由 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性表出,且表示方法唯一
a = − 4 a=-4 a=4
A ˉ = ( − 4 − 2 − 1 1 2 1 1 b 10 5 4 c ) → ( 2 1 1 b 0 0 1 2 b + 1 0 0 0 3 b − c − 1 ) \bar{A}=\begin{pmatrix} -4 & -2 & -1 & 1 \\ 2 & 1 & 1 & b \\ 10 & 5 & 4 & c \end{pmatrix}\rightarrow \begin{pmatrix} 2 & 1 & 1 & b \\ 0 & 0 & 1 & 2b+1 \\ 0 & 0 & 0 & 3b-c-1 \end{pmatrix} Aˉ= 42102151141bc 200100110b2b+13bc1
因此,当 a = − 4 , 3 b − c ≠ 1 a=-4,3b-c\ne1 a=4,3bc=1时,方程组无解,即 β \beta β不能由 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性表出
a = − 4 , 3 b − c = 1 a=-4,3b-c=1 a=4,3bc=1,有 r ( A ) = r ( A ˉ ) = 2 < 3 r(A)=r(\bar{A})=2<3 r(A)=r(Aˉ)=2<3,方程组有 ∞ \infty 组解,即 β \beta β可由 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3线性表出但表示方法不唯一
A ˉ → ( 2 1 1 b 0 0 1 2 b + 1 0 0 0 3 b − c − 1 ) → ( 2 1 0 − b − 1 0 0 1 2 b + 1 0 0 0 0 ) \bar{A}\rightarrow \begin{pmatrix} 2 & 1 & 1 & b \\ 0 & 0 & 1 & 2b+1 \\ 0 & 0 & 0 & 3b-c-1 \end{pmatrix}\rightarrow\begin{pmatrix} 2 & 1 & 0 & -b-1 \\ 0 & 0 & 1 & 2b+1 \\ 0 & 0 & 0 & 0 \end{pmatrix} Aˉ 200100110b2b+13bc1 200100010b12b+10
x 1 = t x_{1}=t x1=t,则 x 2 = − 2 t − b − 1 , x 3 = 2 b + 1 x_{2}=-2t-b-1,x_{3}=2b+1 x2=2tb1,x3=2b+1
( 1 ) (1) (1)
β = t α 1 − ( 2 t + b + 1 ) α 2 + ( 2 b + 1 ) α 3 t 为任意常数 \beta=t \alpha_{1}-(2t+b+1)\alpha_{2}+(2b+1)\alpha_{3}\quad t为任意常数 β=tα1(2t+b+1)α2+(2b+1)α3t为任意常数

例:设三阶矩阵 A = ( α 1 α 2 α 3 ) , B = ( β 1 β 2 β 3 ) A=\begin{pmatrix}\alpha_{1} & \alpha_{2} & \alpha_{3}\end{pmatrix},B=\begin{pmatrix}\beta_{1} & \beta_{2} & \beta_{3}\end{pmatrix} A=(α1α2α3),B=(β1β2β3),若向量组 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3可由向量 β 1 , β 2 , β 3 \beta_{1},\beta_{2},\beta_{3} β1,β2,β3线性表出,证明: B T x = 0 B^{T}x=0 BTx=0的解,均为 B x = 0 Bx=0 Bx=0的解

由于向量组 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3可由向量 β 1 , β 2 , β 3 \beta_{1},\beta_{2},\beta_{3} β1,β2,β3线性表出,则有
B C = A ⇒ C T B T = A T BC=A\Rightarrow C^{T}B^{T}=A^{T} BC=ACTBT=AT
由题意
A T x = ( C T B T ) x = C T ( B T x ) = C T 0 = 0 \begin{aligned} A^{T}x=(C^{T}B^{T})x=C^{T}(B^{T}x)=C^{T}0=0 \end{aligned} ATx=(CTBT)x=CT(BTx)=CT0=0
原题得证

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值