TensorFlow 2 Object Detection API 教程: model 命名规则

TensorFlow 2 Object Detection API 教程: model 命名规则

COCO-trained models {#coco-models}

TensorFlow 2 Object Detection API 预训练的model 命名规则如下:目标检测算法_特征提取网络_训练数据集.

例如:ssd_mobilenet_v1_fpn_640x640_coco17_tpu-8.tar.gz的意思是:该模型使用了SSD(Single Shot Multibox Detector)目标检测算法;mobilenet特征提取网络,在COCO数据集上进行了训练。

速度(Speed)是指该模型在NVIDIA GeForce GTX  TITAN X 显卡上处理 600 * 600 分辨率图像(包含预处理和后处理)的速度。

平均精度均值(mAP)是指该模型识别多类物体时,每类物体识别精度(AP)的平均值。mAP值越高,表明该模型识别精度越高。

输出(outputs)有两种类型:边界框(boxes)和掩模(Masks)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值