上一篇博客中我们已经总结了文本分类中常用的深度学习模型,因为知乎的本次竞赛是多标签的文本分类任务,这也是我第一次接触多标签分类,所以想单独写一篇博客来记录这方面的相关知识。
在这里首先列出几篇参考的文章:
基于神经网络的多标签分类可以追溯到周志华在2006年发表的文章: Multi-Label Neural Networks with Applications to Functional Genomics and Text Categorization。其贡献在于提出了BP-MLL(多标签反向传播)以及新的误差函数:
然后是一篇基于周志华文章改进的论文:Large-scale Multi-label Text Classification Revisiting Neural Networks。这篇文章提出使用Adagrad,dropout等技术,此外还提出使用标准的交叉熵函数作为目标函数效果更好。
上面的文章还是使用普通的神经网络进行分类,接下来就出现了基于深度学习模型的方法。比如:Large Scale Multi-label Text Classification with Semantic Word Vectors。这篇文章很简单,就是把TextCNN和GRU直接用到多标签文本分类里,最后根据一个阈值alpha来确定样本是否属于某个类别。
Improved Neur