【线性代数】【一】1.3 消元法的矩阵表示与初等变换


前言

前文中介绍了线性方程组的矩阵表示,并从矩阵表示的角度分析了消元法的过程与结果。那么消元法过程中采取的换行,数乘,以及乘系数求和操作放在矩阵中,会是什么样呢?可以用矩阵运算的方式表示这些操作吗?本文将解答这个问题


一、行向量的线性组合

首先我们复习一下1.1中提到的,将线性方程组看作求解一组(列)向量的加权求和的系数,即线性组合系数。如下式所示

A x = ( a 1 a 2 a 3 ) x = b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{Ax} = \left( \begin{array}{ccc} \bm{a}_1 & \bm{a}_2 & \bm{a}_3 \\ \end{array} \right)x=b=x_1\bm{a}_1+x_2\bm{a}_2+x_3\bm{a}_3 Ax=(a1a2a3)x=b=x1a1+x2a2+x3a3

其中 a i \bm{a}_i ai为矩阵中的列向量。那么通过对称性我们容易想到,如果我们把 x x x放在矩阵左边会怎样?为了保证矩阵乘法仍然可以进行(左矩阵的列数等于右矩阵的行数),也为了未知数的系数仍然与原线性方程组保持一致,我们需要对 A \bm{A} A x x x做转置,从而得到下列式子:

x T A T = x ( a 1 T

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值