原文:https://arxiv.org/abs/2007.07632
代码:https://github.com/yshenaw/GNN-Resource-Management
WCGCN:无线信道图卷积网络(Wireless channel graph convolution network)
WMMSE:加权最小均方误差( weighted minimum mean square error)
CSI:通道状态信息(channel state information)
0.目录
摘要
一、简介
A.贡献
B.符号表示
二、无线网络的图形建模
A. 有向图和置换等方差性
B. 作为图的无线网络
C.K-用户干扰信道的关系图建模
三、资源管理的神经网络架构设计
A. 通过图神经网络优化无线网络
B. MPGNN
C. MPGNN 的关键特性
D. MPGNN 的有效实现
四、基于mpgnn的无线电资源管理的理论分析
A. 简化
B. mpgnn的等效性与分布式优化
C. mpgnn的性能和推广
五、模拟结果
A.平均速率最大化
B.加权求和速率最大化
C. 波束设计
六、结论
《资源管理的可扩展图神经网络:体系结构设计与理论分析》
摘要:
背景,深度学习最近已成为解决资源管理问题的颠覆性技术:
1.现有的神经网络架构的问题:可扩展性差、泛化性差、缺乏可解释性。
2.提高可扩展性和泛化性的方法:将目标任务的结构合并到神经网络架构中。?
本文,应用图神经网络 (GNN) 来解决大规模资源管理问题:
1.证明无线电资源管理问题可以被表述为图优化问题(具有通用置换等方差特性)
2.我们确定了MPGNN(消息传递图神经网络 )。
3.MPGNN满足置换等方差性,可以推广到大规模问题,享有很高的计算效率。
4.证明了 MPGNN 与一系列分布式优化算法之间的等价性
5.分析基于 MPGNN 的方法的性能和泛化。
一、简介
无线电资源管理,如功率控制[2]和波束形成[3],在无线网络中起着至关重要的作用。不幸的是,许多这些问题是非凸的,并且在计算上具有挑战性。此外,考虑到时变的无线信道和许多移动应用程序的延迟需求,它们需要被实时解决。为解决这些具有挑战性的问题,人们提出了大量的努力来开发有效的算法。现有的算法主要基于凸优化方法[4]、[5],在处理非凸问题方面能力有限,且问题规模较差。可以开发特定问题的算法,然而,这是一个费力的过程,需要许多特定问题的知识。
受最近深度学习在许多应用领域的成功的启发,如计算机视觉和自然语言处理[6],研究人员试图应用基于深度学习的方法,特别是“学习优化”方法,以解决无线网络[7]-[15]中困难的优化问题。这些方法的目标是在没有领域知识的情况下,实时实现接近最优的性能,即算法设计过程的自动化。关于这个主题有两个常见的范式,[17]。第一个是“端到端学习”,它直接使用一个神经网络来近似一个优化问题的最优解。例如,在[7]中,为了解决功率控制问题,使用多层感知器(MLP)逼近经典加权最小均方误差(WMMSE)算法[18]的输入输出映射,以加快计算速度。第二种范式是“优化学习”,它用神经网络取代了传统算法中的无效策略。例如,在[11]中使用了一个MLP来替换分支和绑定算法中的剪枝策略。因此,与[19],[20]中基于优化的方法相比,在接入点选择问题上取得了显著的加速和性能提高。
“学习优化”两种模式的一个关键设计成分是神经网络架构。现有的作品大多采用MLPs[7]、[9]、[11]、[21]或卷积神经网络(CNNs)[8]、[12]。这些架构继承自为图像处理任务开发的架构,因此不是针对无线网络中的问题而定制的。虽然小规模无线网络的性能接近最优,但它们未能利用无线网络结构,因此在大规模无线资源管理问题中的可扩展性和泛化性较差。具体来说,当无线网络规模变大时,这些方法的性能显著下降。例如,[7]显示,K=10时,WMMSE算法的性能差距为2%,K=30时为12%。此外,当测试数据集中的代理数量大于训练数据集时,这些方法的推广性较差。在密集的无线网络中,资源管理可能同时涉及数千上万的用户,用户数量会动态变化,这使得这些基于学习的方法的广泛应用非常困难。
改进可伸缩性和泛化的一个长期想法是将目标任务的结构合并到神经网络体系结构[16],[21]-[23]中。一个突出的例子是计算机视觉的cnn的发展,其灵感来自于当图像的邻居像素被一起考虑[24]时,它们是有用的。这一想法也已成功地应用于许多应用中,如视觉推理[23]、组合优化[25]和路由规划[26]。为了实现基于学习的无线电资源管理的可伸缩性,最近利用具有同质代理的单天线系统结构被用于有效的神经网络结构设计[10],[14]。在静态信道中,观察到信道状态是用户在二维欧几里得空间中地理位置的确定性函数,在[10]中开发了空间卷积,适用于具有数千名用户的无线网络,但不能处理衰落信道。对于衰落的信道,可以观察到信道矩阵可以看作是图[14]的邻接矩阵。从这个角度来看,我们开发了一个在这样一个图上运行的随机边缘图神经网络(REGNN),当无线网络中的用户数量发生变化时,它抑制了良好的泛化特性。然而,在多天线系统或具有异构代理的单天线系统中,信道矩阵不再拟合邻接矩阵的形式,因此不能应用REGNN。
在本文中,我们通过将无线网络建模为无线信道图来解决现有工作的局限性,并开发了神经网络来利用图的拓扑结构。具体来说,我们将代理视为图中的节点,通信信道为有向边,代理特定的参数作为节点特征,信道相关参数为边缘特征。随后,我们将提出在无线信道图上运行的低复杂度神经网络架构。
现有的作品(如[7]、[11]、[13])也有另一个主要的局限性,即它们将所采用的神经网络视为一个黑盒子。尽管在特定的应用程序中具有优越的性能,但很难解释神经网络所学到的东西。为了确保可靠性,了解算法何时工作和何时失败是至关重要的。因此,对基于学习的无线电资源管理方法需要良好的理论理解。与基于学习的方法相比,传统的基于优化的方法得到了很好的研究。这激励着我们在这两种方法之间建立一种关系。特别地,我们将证明所提出的神经网络和一类基于优化的有利方法之间的等价性。这种等价性将允许通过研究基于学习的方法的方法的性能和泛化。
无线电资源管理中有许多问题是非凸。
考虑到随时间变化的信道和程序的延迟要求,需要以实时方式解决。
现有算法:
基于凸优化方法,处理非凸问题方面的能力有限,扩展性很差。
“学习优化”
1.目标:在没有专业知识的情况下实时实现最佳的性能(自动化算法设计)
2.范式:
(1)“端到端学习”,直接使用神经网络来逼近优化问题的最优解。
(2)“边学习边优化”,它用神经网络代替了传统算法中的策略。
例如,[11] 中使用了 MLP替换分支定界算法中的剪枝策略。
“学习优化”这两种范式背后的一个关键是神经网络架构。
现有大多采用 MLP 或卷积神经网络 (CNN)
这些架构是从为图像处理任务开发的架构继承的。
尽管小规模资源管理问题实现了接近最优的性能,但在大规模无线资源管理问题中可扩展性和泛化性较差。
可扩展性差:当规模变大时,性能会急剧下降。
泛化性较差:当测试的代理数大于训练的代理数时效果不好。资源管理可能同时涉及数千个用户,并且用户数量是动态变化的。
提高可扩展性和泛化性的想法:将目标任务的结构合并到神经网络架构中。
一个突出的例子是用于计算机视觉的 CNN 的发展,其灵感来自这样一个事实,即图像的相邻像素在它们一起考虑时是有用的。
为了实现基于学习的资源管理的更好的可扩展性,具有同构代理的单天线系统中的结构最近被用于有效的神经网络架构设计。
在静态信道中,观察到信道状态是 2D 欧几里德空间中用户地理位置的确定性函数,[10] 中开发了空间卷积。据观察,信道矩阵可以被视为图形的邻接矩阵. 从这个角度来看,开发了一种在这种图上运行的随机边缘图神经网络(REGNN),当无线网络中的用户数量发生变化时,它会抑制良好的泛化特性。然而,在多天线系统或具有异构代理的单天线系统中,***信道矩阵***不再适合邻接矩阵的形式,无法应用REGNN。
在本文中,我们通过将无线网络建模为无线信道图并开发神经网络来利用图拓扑来解决现有工作的局限性。
代理=>图中的节点
代理参数=>节点特征
通信通道=>有向边
通道参数=>边特征
将提出在信道图上运行的低复杂度神经网络架构。
现有工作还有另一个主要限制,但很难解释神经网络学到的东西。
为了确保可靠性,了解算法何时起作用以及何时失败至关重要。
需要对基于学习的无线电资源管理方法有很好的理论理解。与基于学习的方法相比,传统的基于优化的方法得到了很好的研究。这激发了我们在这两种方法之间建立关系。
我们将证明等价在提出的神经网络和一系列有利的基于优化的方法之间。
这种等效性将允许通过研究基于学习的方法的等效优化方法,为基于学习的方法的性能和泛化开发易于处理的分析。
A.贡献
开发了(解决密集网络中的资源管理问题的)可扩展的深度学习方法
1.将信道关系建模为信道图,并将资源管理问题制定为图优化问题。
2.确定了一个在信道图上运行的神经网络( MPGNN)
具有推广到大规模问题的能力,同时享有较高的计算效率。
3.我们在 MPGNN 类中提出了一个***无线通道图卷积网络***(WCGCN)。除了继承 MPGNN 的优点外,WCGCN 在解决无线电资源管理问题方面还具有几个独特的优势。
它可以有效地利用与代理相关的特征和与通道相关的特征。
它对特征的损坏不敏感,例如信道状态信息 (CSI),这意味着它们可以与部分和不完美的 CSI 一起应用。
4.证明了 MPGNN 和一系列分布式优化算法之间的等价性。
5.测试了 WCGCN 的有效性,使用未标记的数据进行训练,发现其更好更快
B.符号表示
H、T、-1分别表示共轭转置、转置、逆
张量X中的元素索引
二、无线网络的图形建模
我们将无线网络建模为图,并将无线电资源管理问题表述为图优化问题。将确定无线电资源管理问题的关键特性,然后将其用于设计有效的神经网络架构。
A. 有向图和置换等方差性?
有向图可以表示为顺序对 G=(V,F)
如果有一个排列π,即π*A=B,则说两个图A和B是同构的
A:图的邻接矩阵
r:我们为每个节点vi∈V分配一个优化变量ri , 优化变量表示为γ=[γ1,···,γ|V|]T
现在我们引入定义在有向图上的优化问题,并确定它们的排列不变性和等方差性质。图上定义的优化问题:
minimize g(r,A) , subject to Q(r,A)<0
B. 作为图的无线网络
我们将无线网络的每个代理,例如移动用户或基站,视为图中的一个节点。
节点特征结合了代理的属性,例如,用户在加权和速率最大化问题中的权重[18]。
边缘特征包括对应信道的属性,例如标量(或矩阵)以表示单天线(或多天线)系统的信道状态。
信道图是一个有序的元组G=(V,E,s,t),其中V是节点集,E是边缘集,s:V→Cd1将一个节点映射到其特征,t:E→Cd2将一条边缘映射到其特征。表示V={v1、v2、···、v|V|}。
C.K-用户干扰信道的关系图建模
在本小节中,作为一个具体的例子,我们提出了一个经典的无线电资源管理问题的图建模,即波束形成在k用户干扰信道中加权和速率最大化。它将被用作IV-C节理论研究和V节模拟的主要测试设置。总共有K个收发机对,每个发射机配备Nt天线,每个接收机配备单个天线。设vk表示第k个发射机的波束形成器。接收器k的接收信号为yk=hHk、kvksk+Kj=khHj、kvjsj+nk,其中hj、k∈CNt表示从发射机j到接收机k的信道状态,nk∈C表示复高斯分布CN(0,σ2k)后的加性噪声。
接收机k的信干扰噪比(SINR)
表示V=[v1、···、vk]T∈CK×Nt作为波束形成矩阵。目的是找到最优波束形成器来最大化加权和率
1)图建模:我们将第k个收发器对视为图中的第k个节点。由于远端代理引起的干扰很小,只有当发射机j和接收机k之间的距离低于一定的阈值d时,我们才从节点j到节点k绘制一条有向边。
问题(6)具有关于V、Z和A的排列等方差性质,如命题4所示。为了有效、有效地解决这一问题,所采用的神经网络应利用排列等方差特性,同时结合节点特征和边缘特征。我们将开发一个有效的神经网络架构来实现这一目标。
三、资源管理的神经网络架构设计
A. 通过图神经网络优化无线网络
B. MPGNN
在传统的机器学习任务中,数据通常可以嵌入到欧几里得空间中,例如,图像。最近,有越来越多的从非欧几里得空间生成的应用程序,可以自然地建模为图。
这促使研究人员开发GNNs[29],它有效地利用了图形结构。GNNs将传统的cnn、递归神经网络和自动编码器推广到图任务中。
信道状态不能嵌入到欧几里得空间中。因此,在无线网络中采用“学习优化”方法时,在非欧几里得空间上运行的神经网络是必要的。
(1)基于欧几里得数据的cnn。
与mlp相比,cnn在图像处理任务中表现出了优越的性能。cnn的思路是考虑相邻的像素。与mlp一样,cnn也具有层级结构。在每一层中,对输入应用一个二维卷积。
尽管cnn在计算机视觉方面取得了巨大的成功,但它们并不能应用于非欧几里得数据。
(2)空间图卷积网络(SGNNs)
从空间的角度扩展到图中,同时在图的同构性测试中享有性能保证。我们将这种体系结构称为空间图卷积网络(SGNNs)。在CNN(7)的每一层中,每个像素聚合来自邻居像素的信息,然后更新其状态;在SGNN的每一层中,每个节点通过聚合来自其相邻节点的特征来更新其表示。
尽管SGNNs在图问题中取得了成功,但由于很难直接应用于无线电资源分配问题,因为它们不能利用边缘特性。这意味着它们不能在无线网络中合并信道状态。我们修改了(8)中的定义,以利用边缘特征,并将其称为MPGNN。
C. MPGNN 的关键特性
1)置换等方差
2)泛化到不同规模的问题的能力
3)更少的训练样本
4)计算效率高
D. MPGNN 的有效实现
四、基于mpgnn的无线电资源管理的理论分析
1.证明了mpGNN与一类分布式算法之间的等价性。
2.分析了mpGNN法的性能。
A. 简化
为了为解决无线电资源管理问题的“学习优化”方法提供理论保证,理解基于神经网络的方法的性能和泛化是至关重要的。不幸的是,神经网络的训练和泛化是一个尚未解决的问题。我们做了几个常用的简化,以使性能分析易于处理。
首先,我们关注MPGNN类,而不是图神经网络(GCN)。根据[32]中的引理5和推论6,我们可以设计一个具有与MPGNN类一样强大的MLP处理单元的MPGNN,因此这种简化很好地满足了我们的目的.
其次,我们的目标是证明一个具有性能保证的MPGNN的存在性。因为我们在模拟过程中使用有限的训练样本的随机梯度下降来训练神经网络,所有我们可能找不到相应的神经网络参数。
虽然这可能会在理论和实践之间留下一些差距,但我们的结果是重要的第一步。这两种简化方法在GNNs[32]、[39]、[40]的性能分析中被普遍采用。
B. mpgnn的等效性与分布式优化
C. mpgnn的性能和推广
五、模拟结果
A.平均速率最大化
B.加权求和速率最大化
在这个应用中,我们考虑在×区域内的K个单天线收发器对。发射机随机位于A×A区域,而每个接收机均匀分布在相应发射机的[dmin,dmax]内。我们采用[19]的信道模型,每个设置使用10000个训练样本。为了减少CSI训练的开销,我们假设只有当发射机j和接收机k之间的距离在500米以内时,hj,k才能用于WCGCN。为了提供性能上限,假设全局CSI可用于WMMSE。加权和速率最大化的权值,即(5)中的wk,是由训练和测试数据集中[0,1]中的均匀分布生成的。对于WCGCN(11)的特定参数设置,我们将MLP1的隐藏单元设置为{5、32、32},将MLP2设置为{35、16、1},将β(·)设置为sigmoid函数。
1)性能比较:当训练和测试数据集中的对数相同时,我们首先测试了WCGCN的性能。具体来说,我们考虑在1000m×1000m区域的K=50对。我们用不同的dmin和dmax值来测试WCGCN的性能,如表二所示。表中的条目是通过不同方法获得的和速率。我们观察到,本地CSIWCGCN与全局CSIWMMSE的竞争性能。
接下来,为了测试该方法的泛化能力,我们在有数十个用户的无线网络上训练WCGCN,并在有数百或数千名用户的无线网络上进行测试,如下两个模拟所示。
2)推广到更大的规模:我们首先在1000米×1000米区域用50对训练WCGCN。然后,我们在用户密度(即A2/K)固定的情况下,改变测试集中的对的数量。结果如表三所示。可以看出,随着用户数量的增加,性能是稳定的。这还表明,WCGCN可以很好地推广到更大的问题尺度,这与我们的分析一致。
3)推广到更高的密度:在这个测试中,我们首先在1000米×1000米区域训练50对WCGCN。然后,我们在确定区域大小的同时更改测试集中的对数。结果如表4所示,与K=50相比的性能损失如支架。性能稳定,密度增加4倍,即使密度增加10倍,也能达到良好的性能。
C. 波束设计
在本小节中,我们考虑了在(5)中实现和速率最大化的波束形成。具体来说,我们考虑了A×A区域内的K个收发机对,其中发射机配备多个天线,每个接收机配备一个天线。发射机在该区域均匀产生,接收机在相应的发射机的[dmin,dmax]内均匀产生。我们在[19]中采用信道模型,每个设置使用50000个训练样本。对WCGCN和WMMSE的可用CSI的假设与上一小节相同。在WCGCN中,一个复数被视为两个实数。对于WCGCN(11)的特定参数设置,我们设置MLP1的隐藏单位为{6Nt,64,64},MLP2为{64+4Nt,32,2Nt}
1)性能比较:当测试数据集中的对数和测试数据集中的对数相同时,我们首先测试了WCGCN的性能。具体来说,我们考虑了1000米乘1000米区域内的K=50对,每个发射机配备2个天线。我们用不同的dmin和dmax测试了WCGCN的性能。结果如表V所示,我们观察到WCGCN与本地CSI的WMMSE的性能相当,证明了该方法对多天线系统的适用性。
2)推广到更大的规模:我们首先用Nt=2在1000米乘1000米的区域内训练50对WCGCN。然后,当用户密度(即A2/K)固定时,我们改变成对的数量。研究结果见表六。随着用户数量的增加,性能保持稳定,这与我们的理论分析一致。
3)推广到更大的密度:我们首先用Nt=2在1000米乘1000米的区域上训练50对WCGCN。然后,我们在确定面积大小的同时改变成对的数量。结果如表七所示,性能损失如括号所示。性能稳定,密度增加2倍,而令人满意的性能达到稳定,密度增加4倍。当密度增长时,性能会下降,这表明当测试数据集中的密度比训练数据集大得多时,需要额外的训练。
4)计算时间比较:本测试比较了不同方法对不同问题尺度的运行时间。我们在GeForceGTX1080Ti上运行“WCGCNGPU”,而其他方法在Intel®Xeon®CPUE5-2643v4上运行@3.40GHz。神经网络的实现利用了GPU的并行计算,而WMMSE由于其顺序计算流而不能这样做。运行时间平均超过50个问题实例,如图4所示与WMMSE相比,加速的速度随着问题规模的增加而变大。这得益于WCGCN的低计算复杂度。如图所示,WCGCNCPU的计算复杂度是线性的,WCGCNGPU几乎是一个常数,这与我们在III-C节中的分析一致。值得注意的是,WCGCN能够在6毫秒内用1000名用户来解决这个问题。
六、结论
本文开发了一种基于gnn网络的可扩展神经网络架构来解决无线资源管理问题。与现有的基于学习的方法相比,我们专注于神经体系结构的设计,以满足关键的性能需求,包括低训练成本、高计算效率和良好的泛化性。此外,我们还从理论上将基于学习的方法和基于优化的方法联系起来,揭示了学习对优化方法的性能保证。我们相信,这项调查将在理论和实践方面产生深远的意义。至于未来的方向,研究无线网络中无线电资源管理的mpgnn的分布式部署,并将我们的理论结果推广到更一般的应用场景将是很有趣的。
省略的内容:
功率控制问题
波束成形问题
WMMSE 算法
衰落信道