高级优化理论与方法(十四)

Non-linear Constrained Optimization

KKT-Theorem(FONC)

f , h , g ∈ C 1 , x f,h,g\in C^1,x f,h,gC1,x: regular point & local minimizer. Then, exist λ ∗ ∈ R m , μ ∈ R p \lambda^*\in \mathbb{R}^m,\mu \in \mathbb{R}^p λRm,μRp:
μ ∗ ≥ 0 \mu^*\geq 0 μ0
D f ( x ∗ ) + λ ∗ T D h ( x ∗ ) + μ ∗ T D g ( x ∗ ) = 0 Df(x^*)+{\lambda^*}^T Dh(x^*)+{\mu^*}^T Dg(x^*)=0 Df(x)+λTDh(x)+μTDg(x)=0
μ ∗ T g ( x ∗ ) = 0 {\mu^*}^T g(x^*)=0 μTg(x)=0

SONC

Thm: f , h , g ∈ C 2 , x ∗ f,h,g\in C^2,x^* f,h,gC2,x:regular point & local minimizer.Then, exist λ ∗ ∈ R m , μ ∈ R p \lambda^*\in \mathbb{R}^m,\mu \in \mathbb{R}^p λRm,μRp:
μ ∗ ≥ 0 , D f ( x ∗ ) + λ ∗ T D h ( x ∗ ) + μ ∗ T D g ( x ∗ ) = 0 , μ ∗ T g ( x ∗ ) = 0 \mu^*\geq 0,Df(x^*)+{\lambda^*}^T Dh(x^*)+{\mu^*}^T Dg(x^*)=0,{\mu^*}^T g(x^*)=0 μ0,Df(x)+λTDh(x)+μTDg(x)=0,μTg(x)=0
∀ y ∈ T ( x ∗ ) : y T L ( x , λ , μ ) y ≥ 0 \forall y\in T(x^*):y^TL(x,\lambda,\mu)y\geq 0 yT(x):yTL(x,λ,μ)y0

注: T ( x ∗ ) = { y : D h ( x ∗ ) y = 0 , D g j ( x ∗ ) y = 0 , ∀ j ∈ J ( x ∗ ) } T(x^*)=\{y:Dh(x^*)y=0,Dg_j(x^*)y=0,\forall j\in J(x^*)\} T(x)={y:Dh(x)y=0,Dgj(x)y=0,jJ(x)}

Definition

Def: T ~ ( x ∗ , μ ) = { y : D h ( x ∗ ) y = 0 , D g j ( x ∗ ) y = 0 , f o r j ∈ J ~ ( x ∗ , μ ∗ ) } \tilde{T}(x^*,\mu)=\{y:Dh(x^*)y=0,Dg_j(x^*)y=0, for j\in \tilde{J}(x^*,\mu^*)\} T~(x,μ)={y:Dh(x)y=0,Dgj(x)y=0,forjJ~(x,μ)}

Remark: ∵ J ~ ( x ∗ , μ ∗ ) ⊆ J ( x ∗ ) ∴ T ( x ∗ ) ⊆ T ~ ( x ∗ , μ ∗ ) \because \tilde{J}(x^*,\mu^*)\subseteq J(x^*) \therefore T(x^*)\subseteq \tilde{T}(x^*,\mu^*) J~(x,μ)J(x)T(x)T~(x,μ)

SOSC

Thm: f , h , g ∈ C 2 f,h,g\in C^2 f,h,gC2. If exists x ∗ ∈ R n x^*\in\mathbb{R}^n xRn and λ ∗ ∈ R m , μ ∈ R p \lambda^*\in\mathbb{R}^m,\mu\in\mathbb{R}^p λRm,μRp s.t.
μ ∗ ≥ 0 , D f ( x ∗ ) + λ ∗ T D h ( x ∗ ) + μ ∗ T D g ( x ∗ ) = 0 , μ ∗ T g ( x ∗ ) = 0 \mu^*\geq 0,Df(x^*)+{\lambda^*}^T Dh(x^*)+{\mu^*}^T Dg(x^*)=0,{\mu^*}^T g(x^*)=0 μ0,Df(x)+λTDh(x)+μTDg(x)=0,μTg(x)=0
∀ y ∈ T ~ ( x ∗ ) \forall y\in \tilde{T}(x^*) yT~(x) with y ≠ 0 : y T L ( x ∗ , λ ∗ , μ ∗ ) y > 0 y\neq 0:y^TL(x^*,\lambda^*,\mu^*)y>0 y=0:yTL(x,λ,μ)y>0
then x ∗ x^* x is a strict local minimizer.

Example 1

min x 1 x 2 x_1x_2 x1x2
s.t. x 1 + x 2 ≥ 2 x_1+x_2\geq 2 x1+x22
x 2 ≥ x 1 x_2\geq x_1 x2x1

f ( x ) = x 1 x 2 f(x)=x_1x_2 f(x)=x1x2
g 1 ( x ) = 2 − x 1 − x 2 g_1(x)=2-x_1-x_2 g1(x)=2x1x2
g 2 ( x ) = x 1 − x 2 g_2(x)=x_1-x_2 g2(x)=x1x2

∇ f ( x ) = [ x 2 x 1 ] , ∇ g 1 ( x ) = [ − 1 − 1 ] , ∇ g 2 ( x ) = [ 1 − 1 ] \nabla f(x)=\begin{bmatrix} x_2\\ x_1 \end{bmatrix},\nabla g_1(x)=\begin{bmatrix} -1\\ -1 \end{bmatrix},\nabla g_2(x)=\begin{bmatrix} 1\\ -1 \end{bmatrix} f(x)=[x2x1],g1(x)=[11],g2(x)=[11]

KKT-conditions: { μ 1 , μ 2 ≥ 0 x 2 − μ 1 + μ 2 = 0 x 1 − μ 1 − μ 2 = 0 μ 1 ( 2 − x 1 − x 2 ) + μ 2 ( x 1 − x 2 ) = 0 2 − x 1 − x 2 ≤ 0 x 1 − x 2 ≤ 0 \begin{cases} \mu_1,\mu_2\geq 0\\ x_2-\mu_1+\mu_2=0\\ x_1-\mu_1-\mu_2=0\\ \mu_1(2-x_1-x_2)+\mu_2(x_1-x_2)=0\\ 2-x_1-x_2\leq 0\\ x_1-x_2\leq 0 \end{cases} μ1,μ20x2μ1+μ2=0x1μ1μ2=0μ1(2x1x2)+μ2(x1x2)=02x1x20x1x20

x ∗ = [ 1 1 ] , μ ∗ = [ 1 0 ] x^*=\begin{bmatrix} 1\\ 1 \end{bmatrix},\mu^*=\begin{bmatrix} 1\\ 0 \end{bmatrix} x=[11],μ=[10]

D g 1 ( x ∗ ) = [ − 1 , − 1 ] , D g 2 ( x ∗ ) = [ 1 , − 1 ] , D f ( x ) = [ 1 , 1 ] Dg_1(x^*)=[-1,-1],Dg_2(x^*)=[1,-1],Df(x)=[1,1] Dg1(x)=[1,1],Dg2(x)=[1,1],Df(x)=[1,1]
⇒ x ∗ , D g j ( x ∗ ) ∀ j ∈ J ( x ∗ ) \Rightarrow x^*,Dg_j(x^*) \forall j\in J(x^*) x,Dgj(x)jJ(x) linearly independent
⇒ x ∗ \Rightarrow x^* x regular point

T ( x ∗ ) = { y : [ − 1 , − 1 ] y = 0 , [ 1 , − 1 ] y = 0 } = { 0 } T(x^*)=\{y:[-1,-1]y=0,[1,-1]y=0\}=\{0\} T(x)={y:[1,1]y=0,[1,1]y=0}={0}
SONC is satisfied by x ∗ , μ ∗ x^*,\mu^* x,μ

L ( x , λ , μ ) = F ( x ) + λ H ( x ) + μ G ( x ) = [ 0 1 1 0 ] + [ 1 , 0 ] [ 0 0 0 0 ] = [ 0 1 1 0 ] L(x,\lambda,\mu)=F(x)+\lambda H(x)+\mu G(x)=\begin{bmatrix} 0&1\\ 1&0 \end{bmatrix}+[1,0]\begin{bmatrix} 0&0\\ 0&0 \end{bmatrix}=\begin{bmatrix} 0&1\\ 1&0 \end{bmatrix} L(x,λ,μ)=F(x)+λH(x)+μG(x)=[0110]+[1,0][0000]=[0110]
T ~ ( x ∗ , μ ∗ ) = { y : [ − 1 , − 1 ] y = 0 } = { y : − y 1 = y 2 } \tilde{T}(x^*,\mu^*)=\{y:[-1,-1]y=0\}=\{y:-y_1=y_2\} T~(x,μ)={y:[1,1]y=0}={y:y1=y2}

[ 1 , − 1 ] ∈ T ~ ( x ∗ , μ ∗ ) [1,-1]\in \tilde{T}(x^*,\mu^*) [1,1]T~(x,μ)
[ 1 , − 1 ] [ 0 1 1 0 ] [ 1 − 1 ] = [ − 1 , 1 ] [ 1 − 1 ] = − 2 < 0 [1,-1]\begin{bmatrix} 0&1\\ 1&0 \end{bmatrix}\begin{bmatrix} 1\\ -1 \end{bmatrix}=[-1,1]\begin{bmatrix} 1\\ -1 \end{bmatrix}=-2<0 [1,1][0110][11]=[1,1][11]=2<0
SOSC fails.
no local min.

Example 2

min f ( x ) = ( x 1 − 1 ) 2 + x 2 − 2 f(x)=(x_1-1)^2+x_2-2 f(x)=(x11)2+x22
s.t. h ( x ) = x 2 − x 1 − 1 = 0 h(x)=x_2-x_1-1=0 h(x)=x2x11=0
g ( x ) = x 1 + x 2 − 2 ≤ 0 g(x)=x_1+x_2-2\leq 0 g(x)=x1+x220

D f ( x ) = [ 2 x 1 − 2 , 1 ] , D h ( x ) = [ − 1 , 1 ] , D g ( x ) = [ 1 , 1 ] Df(x)=[2x_1-2,1],Dh(x)=[-1,1],Dg(x)=[1,1] Df(x)=[2x12,1],Dh(x)=[1,1],Dg(x)=[1,1]
KKT-conditions: { μ ≥ 0 2 x 1 − 2 − λ + μ = 0 1 + λ + μ = 0 μ ( x 1 + x 2 − 2 ) = 0 x 2 − x 1 − 1 = 0 x 1 + x 2 − 2 ≤ 0 \begin{cases} \mu\geq 0\\ 2x_1-2-\lambda+\mu=0\\ 1+\lambda+\mu=0\\ \mu (x_1+x_2-2)=0\\ x_2-x_1-1=0\\ x_1+x_2-2\leq 0 \end{cases} μ02x12λ+μ=01+λ+μ=0μ(x1+x22)=0x2x11=0x1+x220

⇒ μ ∗ = 0 , x 1 ∗ = 1 2 , x 2 ∗ = 3 2 , λ ∗ = − 1 \Rightarrow \mu^*=0,x_1^*=\frac{1}{2},x_2^*=\frac{3}{2},\lambda^*=-1 μ=0,x1=21,x2=23,λ=1
x x x regular

L ( x ∗ , λ ∗ , μ ∗ ) = F ( x ∗ ) + λ ∗ T H ( x ∗ ) + μ ∗ T G ( x ∗ ) = [ 2 0 0 0 ] L(x^*,\lambda^*,\mu^*)=F(x^*)+{\lambda^*}^TH(x^*)+{\mu^*}^TG(x^*)=\begin{bmatrix} 2&0\\ 0&0 \end{bmatrix} L(x,λ,μ)=F(x)+λTH(x)+μTG(x)=[2000]

T ( x ∗ ) = { y : [ − 1 , 1 ] y = 0 , [ 1 , 1 ] y = 0 } = { 0 } T(x^*)=\{y:[-1,1]y=0,[1,1]y=0\}=\{0\} T(x)={y:[1,1]y=0,[1,1]y=0}={0},SONC satisfied
T ~ ( x ∗ , μ ∗ ) = { y : [ − 1 , 1 ] y = 0 } = { y : y 1 = y 2 } \tilde{T}(x^*,\mu^*)=\{y:[-1,1]y=0\}=\{y:y_1=y_2\} T~(x,μ)={y:[1,1]y=0}={y:y1=y2}
y T [ 2 0 0 0 ] y = [ a , a ] [ 2 0 0 0 ] [ a a ] = 2 a 2 y^T\begin{bmatrix} 2&0\\ 0&0 \end{bmatrix}y=[a,a]\begin{bmatrix} 2&0\\ 0&0 \end{bmatrix}\begin{bmatrix} a\\ a \end{bmatrix}=2a^2 yT[2000]y=[a,a][2000][aa]=2a2

∀ y ≠ 0 : 2 a 2 > 0 ⇒ x ∗ = [ 1 2 3 2 ] \forall y\neq 0:2a^2>0\Rightarrow x^*=\begin{bmatrix} \frac{1}{2}\\ \frac{3}{2} \end{bmatrix} y=0:2a2>0x=[2123] strict local minimizer

Convex Optimization Problems

min f ( x ) f(x) f(x)
s.t. x ∈ Ω x\in \Omega xΩ

Ω : \Omega: Ω: a convex set
f : f: f: a convex function

Definition

Def: Ω : \Omega: Ω: convex set, if ∀ x , y ∈ Ω , ∀ α ∈ ( 0 , 1 ) : α x + ( 1 − α ) y ∈ Ω \forall x,y\in\Omega,\forall \alpha \in (0,1):\alpha x+(1-\alpha)y\in \Omega x,yΩ,α(0,1):αx+(1α)yΩ.

Def: The graph of f : Ω → R f:\Omega\rightarrow \mathbb{R} f:ΩR is a set of points in Ω × R ⊆ R n + 1 \Omega \times \mathbb{R}\subseteq\mathbb{R}^{n+1} Ω×RRn+1 by { [ x f ( x ) ] : x ∈ Ω } \Bigg\{\begin{bmatrix} x\\ f(x) \end{bmatrix}:x\in\Omega\Bigg\} {[xf(x)]:xΩ}

Def: The epigraph of f f f, denoted by e p i ( f ) epi(f) epi(f) is a set of points: e p i ( f ) = { [ x β ] : x ∈ Ω , β ∈ R , f ( x ) ≤ β } epi(f)=\Bigg\{ \begin{bmatrix} x\\ \beta \end{bmatrix}:x\in \Omega,\beta\in\mathbb{R},f(x)\leq\beta\Bigg\} epi(f)={[xβ]:xΩ,βR,f(x)β}

Def: A function f : Ω → R , Ω ⊆ R n f:\Omega\rightarrow \mathbb{R},\Omega\subseteq \mathbb{R}^n f:ΩR,ΩRn is convex on Ω \Omega Ω, if its epigraph is convex.

Lemma

Lem: If a function f : Ω → R f:\Omega\rightarrow \mathbb{R} f:ΩR is a convex on Ω \Omega Ω, then Ω \Omega Ω is a convex set.

Theorem

Thm: A function f : Ω → R f:\Omega\rightarrow \mathbb{R} f:ΩR is convex, if and only if ∀ x , y ∈ Ω , α ∈ ( 0 , 1 ) : f ( α x + ( 1 − α ) y ) ≤ α f ( x ) + ( 1 − α ) f ( y ) \forall x,y\in\Omega,\alpha\in (0,1): f(\alpha x+(1-\alpha)y)\leq \alpha f(x)+(1-\alpha)f(y) x,yΩ,α(0,1):f(αx+(1α)y)αf(x)+(1α)f(y).

注:若把上式的小于等于号改成大于等于号,则 f f f是凹函数( concave function)。

Lemma

Lem: Suppose f , f 1 , f 2 f,f_1,f_2 f,f1,f2 are convex. Then, β f \beta f βf for β ≥ 0 \beta\geq 0 β0 is convex and so is f 1 + f 2 f_1+f_2 f1+f2.

Example

f ( x ) = x 1 x 2 , Ω = { x : x 1 ≥ 0 , x 2 ≥ 0 } f(x)=x_1x_2,\Omega=\{x:x_1\geq 0,x_2\geq0\} f(x)=x1x2,Ω={x:x10,x20}

x = [ 1 2 ] , y = [ 2 1 ] x=\begin{bmatrix} 1\\ 2 \end{bmatrix},y=\begin{bmatrix} 2\\ 1 \end{bmatrix} x=[12],y=[21]

α x + ( 1 − α ) y = [ α + 2 ( 1 − α ) 2 α + ( 1 − α ) ] = [ 2 − α 1 + α ] \alpha x+(1-\alpha)y=\begin{bmatrix} \alpha+2(1-\alpha)\\ 2\alpha+(1-\alpha) \end{bmatrix}=\begin{bmatrix} 2-\alpha\\ 1+\alpha \end{bmatrix} αx+(1α)y=[α+2(1α)2α+(1α)]=[2α1+α]

f ( α x + ( 1 − α ) y ) = ( 2 − α ) ( 1 + α ) = 2 + α − α 2 f(\alpha x+(1-\alpha)y)=(2-\alpha)(1+\alpha)=2+\alpha-\alpha^2 f(αx+(1α)y)=(2α)(1+α)=2+αα2

α f ( x ) + ( 1 − α ) f ( y ) = 2 α + 2 ( 1 − α ) = 2 \alpha f(x)+(1-\alpha)f(y)=2\alpha+2(1-\alpha)=2 αf(x)+(1α)f(y)=2α+2(1α)=2

∵ ∀ α ∈ ( 0 , 1 ) , 2 + α − α 2 > 2 \because \forall \alpha\in (0,1),2+\alpha-\alpha^2>2 α(0,1),2+αα2>2
∴ f \therefore f f is not a convex function

Theorem

Thm: Let f : Ω → R f:\Omega\rightarrow \mathbb{R} f:ΩR and f ∈ C 1 f\in C^1 fC1. Ω \Omega Ω is an open convex set. Then, f f f is convex ⇔ ∀ x , y ∈ Ω : f ( y ) ≥ f ( x ) + D f ( x ) ( y − x ) \Leftrightarrow \forall x,y\in \Omega: f(y)\geq f(x)+Df(x)(y-x) x,yΩ:f(y)f(x)+Df(x)(yx).

Theorem

f ∈ C 2 , Ω : f\in C^2,\Omega: fC2,Ω: an open convex set.
f f f convex ⇔ ∀ x ∈ Ω : F ( x ) \Leftrightarrow \forall x\in\Omega:F(x) xΩ:F(x) of f f f at x x x is positive semidefinite.

Example

  1. f ( x ) = − 8 x 2 ⇒ F ( x ) − − 16 < 0 f(x)=-8x^2\Rightarrow F(x)--16<0 f(x)=8x2F(x)16<0 (✕)
  2. f ( x ) = 4 x 1 2 + 3 x 2 2 + 5 x 3 2 + 6 x 1 x 2 + x 1 x 3 − 3 x 1 − 3 x 2 + 15 f(x)=4x_1^2+3x_2^2+5x_3^2+6x_1x_2+x_1x_3-3x_1-3x_2+15 f(x)=4x12+3x22+5x32+6x1x2+x1x33x13x2+15
    F ( x ) = [ 8 6 1 6 6 0 1 0 10 ] F(x)=\begin{bmatrix} 8&6&1\\ 6&6&0\\ 1&0&10 \end{bmatrix} F(x)= 8616601010
    Δ 1 = ∣ 8 ∣ > 0 \Delta_1=|8|>0 Δ1=∣8∣>0
    Δ 2 = [ 8 6 6 6 ] > 0 \Delta_2=\begin{bmatrix} 8&6\\ 6&6 \end{bmatrix}>0 Δ2=[8666]>0
    Δ 3 = [ 8 6 1 6 6 0 1 0 10 ] = 114 > 0 \Delta_3=\begin{bmatrix} 8&6&1\\ 6&6&0\\ 1&0&10 \end{bmatrix}=114>0 Δ3= 8616601010 =114>0
    ⇒ F ( x ) \Rightarrow F(x) F(x) positive definite
  3. f ( x ) = 2 x 1 x 2 − x 1 2 − x 2 2 f(x)=2x_1x_2-x_1^2-x_2^2 f(x)=2x1x2x12x22
    F ( x ) = [ − 2 2 2 − 2 ] F(x)=\begin{bmatrix} -2&2\\ 2&-2 \end{bmatrix} F(x)=[2222] (✕)

Definition

Def: strictly convex: f ( α x + ( 1 − α ) y ) < α f ( x ) + ( 1 − α ) f ( y ) f(\alpha x+(1-\alpha)y)<\alpha f(x)+(1-\alpha)f(y) f(αx+(1α)y)<αf(x)+(1α)f(y)

Def: (strictly) concave ⇔ − f \Leftrightarrow -f f (strictly) convex

Theorem

Thm: convex optimization:
x ∗ x^* x is global minimizer ⇔ x ∗ \Leftrightarrow x^* x is a local minimizer.

Lemma

Lem: f : f: f: convex function on Ω \Omega Ω. Then, for all c ∈ R , Γ c = { x ∈ Ω : f ( x ) ∈ c } c\in\mathbb{R}, \Gamma_c=\{x\in\Omega:f(x)\in c\} cR,Γc={xΩ:f(x)c} is convex.

Corollary

f : f: f: convex function on Ω \Omega Ω. The set of all global minimizer of f f f is convex.

Lemma

Lem: f : f: f: convex function on Ω \Omega Ω. f ∈ C 1 f\in C^1 fC1. If x ∗ ∈ Ω x^*\in\Omega xΩ satisfies ∀ x ∈ Ω , x ≠ x ∗ : D f ( x ∗ ) ( x − x ∗ ) ≥ 0 \forall x\in\Omega,x\neq x^*:Df(x^*)(x-x^*)\geq 0 xΩ,x=x:Df(x)(xx)0, then x ∗ x^* x is a global minimizer.

Theorem

Thm: f : f: f: convex. f ∈ C 1 f\in C^1 fC1
If x ∗ ∈ Ω x^*\in \Omega xΩ satisfies ∀ d ∈ R n : d T ∇ f ( x ∗ ) ≥ 0 \forall d\in \mathbb{R}^n:d^T\nabla f(x^*)\geq 0 dRn:dTf(x)0, then x ∗ x^* x is a global minimizer.

Corollary

If x ∗ x^* x satisfies ∇ f ( x ∗ ) = 0 \nabla f(x^*)=0 f(x)=0, then x ∗ x^* x global minimizer.

Theorem

Consider
min f ( x ) f(x) f(x)
s.t. h ( x ) = 0 h(x)=0 h(x)=0

h ∈ C 1 h\in C^1 hC1
Assume Ω = { x : h ( x ) = 0 } \Omega=\{x:h(x)=0\} Ω={x:h(x)=0} is convex, for example A x = b Ax=b Ax=b.
f : f: f: convex function on Ω = { x : h ( x ) = 0 } \Omega=\{x:h(x)=0\} Ω={x:h(x)=0}. If x ∗ ∈ Ω x^*\in\Omega xΩ and λ ∗ ∈ R m \lambda^*\in\mathbb{R}^m λRm satisfy D f ( x ∗ ) + λ ∗ D h ( x ∗ ) = 0 Df(x^*)+\lambda^*Dh(x^*)=0 Df(x)+λDh(x)=0, then x ∗ x^* x is a global minimizer.

Theorem

Consider
min f ( x ) f(x) f(x)
s.t. h ( x ) = 0 h(x)=0 h(x)=0
g ( x ) ≤ 0 g(x)\leq 0 g(x)0

Assume: Ω = { x : h ( x ) = 0 , g ( x ) ≤ 0 } \Omega=\{x:h(x)=0,g(x)\leq 0\} Ω={x:h(x)=0,g(x)0}

Thm: If x ∗ ∈ Ω , λ ∗ ∈ R m x^*\in\Omega,\lambda^*\in\mathbb{R}^m xΩ,λRm and μ ∗ ∈ R p \mu^*\in\mathbb{R}^p μRp satisfy
KKT { μ ∗ ≥ 0 D f ( x ∗ ) + λ ∗ T D h ( x ∗ ) + μ ∗ T D g ( x ∗ ) = 0 μ ∗ T g ( x ∗ ) = 0 \begin{cases} \mu^*\geq 0\\ Df(x^*)+{\lambda^*}^TDh(x^*)+{\mu^*}^TDg(x^*)=0\\ {\mu^*}^Tg(x^*)=0 \end{cases} μ0Df(x)+λTDh(x)+μTDg(x)=0μTg(x)=0
then x ∗ x^* x is a global minimizer.

Example

存钱问题: x k x_k xk表示第 k k k月存入银行的钱,银行月利率为 r r r,初始银行账户为0,存入的钱总共不超过D,求怎样存钱使得 n n n月后账户余额最多。

max y n = ( 1 + r ) n x 1 + ( 1 + r ) n − 1 x 2 + ( 1 + r ) x n y_n=(1+r)^nx_1+(1+r)^{n-1}x_2+(1+r)x_n yn=(1+r)nx1+(1+r)n1x2+(1+r)xn
s.t. ∑ i = 1 n x i ≤ D \sum_{i=1}^n x_i\leq D i=1nxiD
x ≥ 0 x\geq 0 x0

{ μ 1 ( e T − D ) = 0 , μ 1 ≥ 0 μ 2 x = 0 e T x ≤ D x ≥ 0 [ ( 1 + r ) n , ( 1 + r ) n − 1 , ⋯   , 1 ] + μ 1 e − μ 2 = 0 \begin{cases} \mu_1 (e^T-D)=0,\mu_1\geq 0\\ \mu_2 x=0\\ e^Tx\leq D\\ x\geq 0\\ [(1+r)^n,(1+r)^{n-1},\cdots,1]+\mu_1e-\mu_2=0 \end{cases} μ1(eTD)=0,μ10μ2x=0eTxDx0[(1+r)n,(1+r)n1,,1]+μ1eμ2=0

μ 1 = ( 1 + r ) n , μ 2 = ( 1 + r ) n e − c \mu_1=(1+r)^n,\mu_2=(1+r)^ne-c μ1=(1+r)n,μ2=(1+r)nec
x 1 = D , x 2 = ⋯ = x n = 0 ⇒ x_1=D,x_2=\cdots=x_n=0\Rightarrow x1=D,x2==xn=0 global opt.

注:该问题从目标函数到限制条件全是线性函数,线性函数显然也是凸函数。于是该问题虽然是线性规划问题,但也可以用凸优化的方法来解。

总结

本文先讨论了非线性优化问题,再讨论了凸优化问题。在非线性优化问题中,介绍了FONC,SONC和SOSC。并给出了两个例子,介绍了求解非线性优化问题的思路,先通过KKT条件(FONC),求出可能的极值点,再用SONC和SOSC来验证,以此严格说明求出的点是或不是极值点。在凸优化问题部分,先介绍了凸的概念。从图的角度引入了凸函数的概念,并给出了其等价定义。最后给出了一系列定理,证明了KKT条件不仅是凸优化问题的必要条件,也是充分条件。于是,求解凸优化问题,只需要用KKT条件求解即可。

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值