keras lstm

  1. keras lstm的参数

(1)units:LSTM层的单元个数,即LSTM网络中隐藏节点的数量。
(2)activation:激活函数,用于更新内部状态的函数(即门的决策函数)。
(3)recurrent_activation:用于更新记忆细胞状态的激活函数。
(4)use_bias:是否使用偏置向量。
(5)kernel_initializer:权重矩阵的初始化方法。
(6)recurrent_initializer:内部状态(记忆细胞)的初始化方法。
(7)bias_initializer:偏置矩阵的初始化方法。
(8)unit_forget_bias:忘记门的偏置。
(9)dropout:控制神经元的抑制的概率,从而消除神经网络过拟合的情况。
(10)recurrent_dropout:神经元的记忆保持不变的概率,从而消除神经网络过拟合的情况。
(11)implementation:指定LSTM的并行化实现,一般默认值为0,表示使用默认实现即CPU实现;数字1表示用GPU实现。
(12)return_sequence:是否返回每个时间步的输出,默认为False,表示返回最后一个时间步的输出。
  1. 激活函数

Keras激活函数是用于计算每个神经元的输出,它扮演着神经网络设计中的重要角色。它有助于控制参数的抑制和获取正确的能量。Keras具有的几个激活函数,可以实现特定的特征提取过程。

model.add(LSTM(50, activation='relu', input_shape=(width, eatures)))

激活函数是神经网络中用于计算输入和偏差的加权和的函数,用于确定神经元是否可以释放。 它通常通过梯度下降法的某种梯度处理来操纵数据,然后产生神经网络的输出,该输出包含数据中的参数。 有时这些激活函数通常称为传递函数。

激活函数具有改善数据学习模式的能力,从而实现了特征检测过程的自动化,并证明它们在神经网络的隐藏层中的使用合理性,并且对于跨领域进行分类很有用。

激活函数可以是线性的,也可以是非线性的,具体取决于它所代表的功能,并用于控制我们的神经网络的输出,其范围从对象识别和分类到语音识别,分段等更多领域。

激活函数在网络结构中发挥的功能取决于其在网络中的位置,因此,将激活函数放置在隐藏层之后时,它将学习到的线性映射转换为非线性形式以便传播,而在输出层中则执行预测功能。

只是永远记住要做:“输入乘以权重,添加偏差并激活

更多描述:如何选择神经网络激活函数:有效的改善模型学习模式的能力 (baidu.com)

  • Sigmoid函数

sigmoid激活函数是Keras中常见的激活函数,它以S型函数形式将输入转换成相应的输出,使输出值处于(0,1)之间。它用于分类的任务,例如二进制分类,Sigmoid函数可以帮助Keras模型明确型推断目标值,而不是使用投票机制来解决。

  • tanh激活函数

tanh激活函数是基于双曲正弦函数,它把输入值变换到-1和1之间。tanh函数介于sigmoid和ReLU函数,它能保证输出的准确性。它的输入和输出都处于(-1,1)之间。它在计算时有着更好的性能,可以有效解决非线性问题。

  • ReLU激活函数

ReLU(Rectified Linear Units)激活函数是Keras中最常用的激活函数,它在输入为正数时直接输出输入数据,当输入为负数时输出为0,它快速、可靠、无限可微,在机器学习领域中使用非常广泛。

  • Softmax激活函数

Softmax激活函数通常用于分类算法预测模型,它能将N维输入值变换为N维输出值,其中每一维的值都在0到1之间。Softmax函数的输出值能和其他输出值相比较,并且能获得比较高的准确率以及可靠的模型性能。

  1. 损失函数 目标函数

keras model.compile(loss='目标函数 ', optimizer='adam', metrics=['accuracy'])

目标函数,或称损失函数,就是计算神经网络每次迭代的前向计算结果与真实值的差距,从而指导下一步的训练向正确的方向进行。

如何使用损失函数呢?具体步骤:

(1)用随机值初始化前向计算公式的参数;

(2)代入样本,计算输出的预测值;

(3)用损失函数计算预测值和标签值(真实值)的误差;

(4)根据损失函数的导数,沿梯度最小方向将误差回传,修正前向计算公式中的各个权重值;

(5)goto 2, 直到损失函数值达到一个满意的值就停止迭代。

回归问题通常用均方差损失函数,可以保证损失函数是个凸函数,即可以得到最优解。而分类问题如果用均方差的话,损失函数的表现不是凸函数,就很难得到最优解。而交叉熵函数可以保证区间内单调。

分类问题的最后一层网络,需要分类函数,Sigmoid或者Softmax,如果再接均方差函数的话,其求导结果复杂,运算量比较大。用交叉熵函数的话,可以得到比较简单的计算结果,一个简单的减法就可以得到反向误差。

更多描述:神经网络系列之三 -- 损失函数 - 五弦木头 - 博客园 (cnblogs.com)

  1. 优化器

优化器是编译Keras模型必要的两个参数之一

首先,Keras的优化器可以分为:

  • 随机梯度下降优化器,例如:SGD

  • 自适应优化器,例如:Adadelta、Adagrad、Adam、RMSprop

在大多数情况下,Adam 是自适应优化器中最好的,无脑选择Adam,没问题。使用Adam这种自适应优化器,还不需要关心学习率的问题。

使用SGD只有在机器学习专家,能手动设计出良好的学习率退火策略(learning rate annealing schedule),效果才能超过Adam。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python是一种高级编程语言,Keras是一个用于构建神经网络模型的深度学习库,CNN代表卷积神经网络,LSTM代表长短期记忆。Python的流行性使得它成为使用Keras库构建神经网络模型的理想选择。 卷积神经网络(CNN)是一种前馈神经网络,常用于计算机视觉任务。其核心思想是通过卷积运算来提取图像的特征。CNN在图像识别、物体检测和语义分割等任务中表现出色。 长短期记忆(LSTM)是一种适用于处理序列数据的循环神经网络(RNN)的特殊类型。与普通的RNN相比,LSTM能够更好地捕捉到长期依赖关系。LSTM通过控制记忆单元来处理序列中的信息,对于许多自然语言处理任务,如语言建模和机器翻译,LSTM是一个非常强大的工具。 在使用Keras库时,借助Python的灵活性和易用性,我们可以轻松地利用CNN和LSTM来构建复杂的深度学习模型。Keras库提供了丰富的高级API和多种预训练模型,可以帮助我们快速搭建和训练模型。 例如,我们可以使用Keras库中的layers模块来创建CNN模型的卷积层和池化层,然后使用LSTM层来处理时序数据。在构建模型时,我们可以选择性地添加Batch Normalization层或Dropout层来提高模型的泛化能力。 使用Keras库可以进行模型的编译、训练和评估等操作,还可以进行模型的保存和加载。同时,Keras库还提供了方便的可视化工具,如TensorBoard,可以帮助我们更好地理解和分析模型的结构和性能。 综上所述,Python、Keras、CNN和LSTM是一组强大的工具和技术,可以用于构建和训练复杂的深度学习模型,解决图像识别、自然语言处理和其他各种任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值