随着人工智能(AI)技术的不断进步,知识密集型任务在AI应用中变得越来越核心。这些任务要求AI系统能够无缝地整合和利用外部信息,以提供更加准确和有用的回答。为了实现这一目标,检索增强生成(Retrieval-Augmented Generation,RAG)技术应运而生,它通过将外部知识与大型语言模型(Large Language Models,LLMs)相结合,显著提升了模型的性能。然而,RAG(面向企业RAG(Retrieval Augmented Generation)系统的多维检索框架)并非完美无缺,它存在实时检索引入的延迟、检索错误影响准确性以及系统复杂性增加维护开销等问题。正是在这种背景下,Cache-Augmented Generation(CAG)作为一种新兴的方法,以其独特的优势,为知识密集型任务提供了一种更快、更简单的替代方案。
Cache-Augmented Generation(CAG):一种更快、更简单的RAG替代方案
最新推荐文章于 2025-06-02 00:36:58 发布