Cache-Augmented Generation(CAG):一种更快、更简单的RAG替代方案

随着人工智能(AI)技术的不断进步,知识密集型任务在AI应用中变得越来越核心。这些任务要求AI系统能够无缝地整合和利用外部信息,以提供更加准确和有用的回答。为了实现这一目标,检索增强生成(Retrieval-Augmented Generation,RAG)技术应运而生,它通过将外部知识与大型语言模型(Large Language Models,LLMs)相结合,显著提升了模型的性能。然而,RAG(面向企业RAG(Retrieval Augmented Generation)系统的多维检索框架)并非完美无缺,它存在实时检索引入的延迟、检索错误影响准确性以及系统复杂性增加维护开销等问题。正是在这种背景下,Cache-Augmented Generation(CAG)作为一种新兴的方法,以其独特的优势,为知识密集型任务提供了一种更快、更简单的替代方案。

一、RAG技术的挑战

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值