在人工智能(AI)领域,随着大型语言模型(LLMs)的兴起,大型语言模型(LLMs)展现出了令人惊叹的能力,从智能聊天到复杂的文本生成,从精准的图像识别到高效的数据分析,它们正深刻地改变着人们的生活和工作方式。然而,这些强大模型的背后也存在诸多问题,如高昂的计算成本、有限的可访问性、数据隐私风险等。在这样的背景下,知识蒸馏(深度解析 DeepSeek R1:强化学习与知识蒸馏的协同力量)技术应运而生,它就像一座桥梁,连接着大型模型的强大能力与小型模型的高效便捷,为人工智能的发展开辟了新的道路。
一、知识蒸馏的演变
知识蒸馏的概念最初起源于模型压缩领域(知识蒸馏:大模型(LLM)中的模型压缩与知识转移技术),其核心思想是通过一种“教师-学生”框架,让一个小型模型(学生模型)从一个大型模型(教