不同调制方式的PWM谐波分析

1 篇文章 0 订阅

Harmonics Analysis of PWM by Double Fourier Seriers

1、Double Fourier Seriers(DFS)

• 谐波分量表达方法

f ( t ) = A 00 2 + ∑ n = 1 ∞ ( A 0 n c o s n y + B 0 n s i n n y ) + ∑ m = 1 ∞ ( A m 0 c o s m x + B m 0 s i n m x ) + ∑ m = 1 ∞ ∑ n = − ∞ n ≠ 0 ∞ [ A m n c o s ( m x + n y ) + B m n s i n ( m x + n y ) ] f(t) = \frac{A_{00}}{2} + \sum\limits_{n=1}^{\infty} (A_{0n}cosny+B_{0n}sinny) + \sum\limits_{m=1}^\infty (A_{m0}cosmx+B_{m0}sinmx) + \sum\limits_{m=1}^\infty\sum\limits_{n=-\infty n\neq0}^\infty[A_{mn}cos(mx+ny)+B_{mn}sin(mx+ny)]

A m n = 1 2 π 2 ∫ − π π ∫ − π π f ( x , y ) c o s ( m x + n y ) d x d y A_{mn} = \frac{1}{2\pi^2}\int\limits_{-\pi}^\pi\int\limits_{-\pi}^\pi f(x,y)cos(mx+ny)dxdy
B m n = 1 2 π 2 ∫ − π π ∫ − π π f ( x , y ) s i n ( m x + n y ) d x d y B_{mn} = \frac{1}{2\pi^2}\int\limits_{-\pi}^\pi\int\limits_{-\pi}^\pi f(x,y)sin(mx+ny)dxdy

• 复数表达方法

C m n = A m n + j B m n = 1 2 π 2 ∫ − π π ∫ − π π f ( x , y ) e j ( m x + n y ) d x d y C_{mn} = A_{mn}+jB_{mn} = \frac{1}{2\pi^2}\int\limits_{-\pi}^\pi\int\limits_{-\pi}^\pi f(x,y)e^{j(mx+ny)}dxdy

• 贝塞尔函数积分

e ± j ξ c o s θ = J 0 ( ξ ) + 2 ∑ k = 1 ∞ j ± k J k ( ξ ) c o s k θ ( J a c o b i − A n g e r E x p a n s i o n ) e^{\pm j\xi cos\theta} = J_0(\xi) + 2\sum\limits_{k=1}^\infty j^{\pm k}J_k(\xi)cosk\theta \qquad \qquad (Jacobi-Anger \quad Expansion)
∫ 0 2 π e ± j ξ c o s θ c o s n θ d θ = ∫ 0 2 π J 0 ( ξ ) c o s n θ d θ ⏟ P 1 + 2 ∫ 0 2 π ∑ k = 1 ∞ j ± k J k ( ξ ) c o s k θ c o s n θ d θ ⏟ P 2 = 当 n ≠ k 时 ， P 2 = 0 当 n ≠ 0 时 ， P 1 = 0 2 π j ± n J n ( ξ ) ⟹ n = 0 ∫ 0 2 π e ± j ξ c o s θ d θ = 2 π J 0 ( ξ ) ( 1 ) \int_0^{2\pi}e^{\pm j\xi cos\theta}cosn\theta d\theta = \underbrace{\int_0^{2\pi}J_0(\xi)cosn\theta d\theta}_{P1} + \underbrace{2\int_0^{2\pi}\sum\limits_{k=1}^\infty j^{\pm k}J_k(\xi)cosk\theta cos n\theta d\theta}_{P2} \\ \qquad \\ \xlongequal[当n\neq k时，P2 = 0]{当n\neq0时，P1=0} 2\pi j^{\pm n}J_n(\xi) \overset{n=0}\Longrightarrow \int_0^{2\pi}e^{\pm j\xi cos\theta}d\theta = \color{red}2\pi J_0(\xi) \qquad (1)

2、PWM调制方式分析

2.1锯齿波

F i g . 1 单 边 调 制 P W M 波 形 传 统 表 达 \qquad \qquad Fig.1 \quad 单边调制PWM波形传统表达

• 在一个载波周期内，锯齿波表达式： f ( θ ) = θ π − 1 f(\theta) = \frac{\theta}{\pi}-1
• 在一个调制波周期内，调制波表达式： f ( ϕ ) = c o s ( ϕ ) f(\phi) = cos(\phi)
• Ω ( ϕ ) \Omega(\phi) 表示在一个载波周期内的占空比
• 假设高电平为 V D C V_{DC}

Ω ( ϕ ) π − 1 = c o s ( ϕ ) ⇒ Ω ( ϕ ) = π [ 1 + c o s ( ϕ ) ] \frac{\Omega(\phi)}{\pi}-1 = cos(\phi) \Rightarrow \Omega(\phi) = \pi[1+cos(\phi)]

V ( θ , ϕ ) = { V D C 0 ≤ θ ≤ Ω ( ϕ ) 0 Ω ( ϕ ) < θ ≤ 2 π \begin{aligned} V(\theta,\phi)=\left\{ \begin{array}{lcl} V_{DC} & & {0 \leq \theta\leq\Omega(\phi)}\\ 0 & & {\Omega(\phi) < \theta\leq 2\pi} \end{array} \right. \end{aligned}

F i g . 2 单 边 调 制 P W M ( a ) 3 D 模 型 ; ( b ) 2 D 模 型 \qquad \qquad Fig.2 \quad 单边调制PWM (a)3D模型;(b)2D模型

(待补充)

3、DFS分析PWM谐波

3.1、单边调制谐波解析

• 直流分量

C 00 = 1 2 π 2 ∫ 0 2 π ∫ 0 2 π V ( θ , ϕ ) e j ( m θ + n ϕ ) d θ d ϕ = 1 2 π 2 ∫ 0 2 π ∫ 0 2 π V ( θ , ϕ ) d θ d ϕ = 1 2 π 2 ∫ 0 2 π ∫ 0 Ω ( ϕ ) V D C d θ d ϕ = 1 2 π 2 ∫ 0 2 π ∫ 0 π [ 1 + c o s ( ϕ ) ] V D C d θ d ϕ = V D C 2 π 2 ∫ 0 2 π π [ 1 + c o s ( ϕ ) ] d ϕ = V D C ( 2 ) C_{00} = \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{2\pi}V(\theta,\phi)e^{j(m\theta+n\phi)}d\theta d\phi \\ \qquad \\ \qquad= \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{2\pi}V(\theta,\phi)d\theta d\phi \\ \qquad\\ \qquad =\frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{\Omega(\phi)}V_{DC}d\theta d\phi= \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{ \pi[1+cos(\phi)]}V_{DC}d\theta d\phi \\ \qquad \\ \qquad =\frac{V_{DC}}{2\pi^2}\int_0^{2\pi} \pi[1+cos(\phi)]d\phi = \color{red}{}V_{DC} \qquad (2)

• 调制波谐波解析

C 0 n = 1 2 π 2 ∫ 0 2 π ∫ 0 Ω ( ϕ ) V D C e j n ϕ d θ d ϕ = V D C 2 π 2 ∫ 0 2 π π [ 1 + c o s ( ϕ ) ] e j n ϕ d ϕ = V D C 2 π [ ∫ 0 2 π e j n ϕ d ϕ + ∫ 0 2 π c o s ( ϕ ) e j n ϕ d ϕ ] = V D C 2 π { 1 j n e j n ϕ ∣ 0 2 π ⏟ P 1 + ∫ 0 2 π c o s ϕ ( c o s n ϕ + j s i n n ϕ ) d ϕ ⏟ P 2 } C_{0n} = \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{\Omega(\phi)}V_{DC}e^{jn\phi}d\theta d\phi = \frac{V_{DC}}{2\pi^2}\int_0^{2\pi}\pi[1+cos(\phi)]e^{jn\phi}d\phi \\ \qquad \\ \qquad =\frac{V_{DC}}{2\pi}[\int_0^{2\pi}e^{jn\phi}d\phi + \int_0^{2\pi}cos(\phi)e^{jn\phi}d\phi] \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}\{\underbrace{\frac{1}{jn}e^{jn\phi}\bigg|_0^{2\pi}}_{P1} +\underbrace{\int_0^{2\pi}cos\phi(cosn\phi+jsin n\phi)d\phi}_{P2}\}

n = 1 n=1 时可得：

C 01 = V D C 2 π ∫ 0 2 π c o s ϕ ( c o s ϕ + j s i n ϕ ) d ϕ = V D C 2 π ( ∫ 0 2 π c o s ϕ c o s ϕ d ϕ + ∫ 0 2 π j c o s ϕ s i n ϕ d ϕ ) = V D C 2 π ( ∫ 0 2 π 1 + c o s ( 2 ϕ ) 2 d ϕ + ∫ 0 2 π j s i n ( 2 ϕ ) 4 d 2 ϕ ) = V D C 2 π π = V D C 2 ( 3 ) C_{01} = \frac{V_{DC}}{2\pi}\int_0^{2\pi}cos\phi(cos\phi+jsin \phi)d\phi \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}(\int_0^{2\pi}cos\phi cos\phi d\phi + \int_0^{2\pi}jcos\phi sin\phi d\phi) \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}(\int_0^{2\pi}\frac{1+cos(2\phi)}{2}d\phi + \int_0^{2\pi}j\frac{sin(2\phi)}{4} d2\phi) \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}\pi = \color{red}\frac{V_{DC}}{2} \qquad (3)

• 载波谐波解析

• 边带谐波解析

3.2 单边调制谐波绘制

\quad 基于上述的推导可以得到单边调制不同成分的解析解， E q . ( 2 ) Eq.(2) 为直流分量， E q . ( 3 ) Eq.(3) 为调制信号分量； E q . ( 4 ) Eq.(4) 为载波谐波分量； E q . ( 5 ) Eq.(5) 为调制波与载波共同作用的谐波分量，下面通过 m a t l a b matlab 绘制上述的图形。

• 绘制bessel函数图形(利用 m a t l a b matlab 函数 b e s s e l j ( n u , z ) besselj(nu,z) )

F i g . 3 第 一 类 贝 塞 尔 函 数 \qquad \qquad Fig.3 \quad 第一类贝塞尔函数

• 载波谐波分量绘制

• 边带谐波分量绘制

• 0
点赞
• 0
评论
• 0
收藏
• 一键三连
• 扫一扫，分享海报

07-26
03-18

07-07 1688
11-03 1724
11-07 1万+
05-02
05-12 800