不同调制方式的PWM谐波分析

Harmonics Analysis of PWM by Double Fourier Seriers

1、Double Fourier Seriers(DFS)
  • 谐波分量表达方法

f ( t ) = A 00 2 + ∑ n = 1 ∞ ( A 0 n c o s n y + B 0 n s i n n y ) + ∑ m = 1 ∞ ( A m 0 c o s m x + B m 0 s i n m x ) + ∑ m = 1 ∞ ∑ n = − ∞ n ≠ 0 ∞ [ A m n c o s ( m x + n y ) + B m n s i n ( m x + n y ) ] f(t) = \frac{A_{00}}{2} + \sum\limits_{n=1}^{\infty} (A_{0n}cosny+B_{0n}sinny) + \sum\limits_{m=1}^\infty (A_{m0}cosmx+B_{m0}sinmx) + \sum\limits_{m=1}^\infty\sum\limits_{n=-\infty n\neq0}^\infty[A_{mn}cos(mx+ny)+B_{mn}sin(mx+ny)] f(t)=2A00+n=1(A0ncosny+B0nsinny)+m=1(Am0cosmx+Bm0sinmx)+m=1n=n=0[Amncos(mx+ny)+Bmnsin(mx+ny)]

其中,

A m n = 1 2 π 2 ∫ − π π ∫ − π π f ( x , y ) c o s ( m x + n y ) d x d y A_{mn} = \frac{1}{2\pi^2}\int\limits_{-\pi}^\pi\int\limits_{-\pi}^\pi f(x,y)cos(mx+ny)dxdy Amn=2π21ππππf(x,y)cos(mx+ny)dxdy
B m n = 1 2 π 2 ∫ − π π ∫ − π π f ( x , y ) s i n ( m x + n y ) d x d y B_{mn} = \frac{1}{2\pi^2}\int\limits_{-\pi}^\pi\int\limits_{-\pi}^\pi f(x,y)sin(mx+ny)dxdy Bmn=2π21ππππf(x,y)sin(mx+ny)dxdy

  • 复数表达方法

C m n = A m n + j B m n = 1 2 π 2 ∫ − π π ∫ − π π f ( x , y ) e j ( m x + n y ) d x d y C_{mn} = A_{mn}+jB_{mn} = \frac{1}{2\pi^2}\int\limits_{-\pi}^\pi\int\limits_{-\pi}^\pi f(x,y)e^{j(mx+ny)}dxdy Cmn=Amn+jBmn=2π21ππππf(x,y)ej(mx+ny)dxdy

  • 贝塞尔函数积分

e ± j ξ c o s θ = J 0 ( ξ ) + 2 ∑ k = 1 ∞ j ± k J k ( ξ ) c o s k θ ( J a c o b i − A n g e r E x p a n s i o n ) e^{\pm j\xi cos\theta} = J_0(\xi) + 2\sum\limits_{k=1}^\infty j^{\pm k}J_k(\xi)cosk\theta \qquad \qquad (Jacobi-Anger \quad Expansion) e±jξcosθ=J0(ξ)+2k=1j±kJk(ξ)coskθ(JacobiAngerExpansion)
⇓ \qquad \qquad \qquad \Downarrow
∫ 0 2 π e ± j ξ c o s θ c o s n θ d θ = ∫ 0 2 π J 0 ( ξ ) c o s n θ d θ ⏟ P 1 + 2 ∫ 0 2 π ∑ k = 1 ∞ j ± k J k ( ξ ) c o s k θ c o s n θ d θ ⏟ P 2 = 当 n ≠ k 时 , P 2 = 0 当 n ≠ 0 时 , P 1 = 0 2 π j ± n J n ( ξ ) ⟹ n = 0 ∫ 0 2 π e ± j ξ c o s θ d θ = 2 π J 0 ( ξ ) ( 1 ) \int_0^{2\pi}e^{\pm j\xi cos\theta}cosn\theta d\theta = \underbrace{\int_0^{2\pi}J_0(\xi)cosn\theta d\theta}_{P1} + \underbrace{2\int_0^{2\pi}\sum\limits_{k=1}^\infty j^{\pm k}J_k(\xi)cosk\theta cos n\theta d\theta}_{P2} \\ \qquad \\ \xlongequal[当n\neq k时,P2 = 0]{当n\neq0时,P1=0} 2\pi j^{\pm n}J_n(\xi) \overset{n=0}\Longrightarrow \int_0^{2\pi}e^{\pm j\xi cos\theta}d\theta = \color{red}2\pi J_0(\xi) \qquad (1) 02πe±jξcosθcosnθdθ=P1 02πJ0(ξ)cosnθdθ+P2 202πk=1j±kJk(ξ)coskθcosnθdθn=0P1=0 n=kP2=02πj±nJn(ξ)n=002πe±jξcosθdθ=2πJ0(ξ)(1)

2、PWM调制方式分析
2.1锯齿波

在这里插入图片描述

F i g . 1 单 边 调 制 P W M 波 形 传 统 表 达 \qquad \qquad Fig.1 \quad 单边调制PWM波形传统表达 Fig.1PWM

  • 在一个载波周期内,锯齿波表达式: f ( θ ) = θ π − 1 f(\theta) = \frac{\theta}{\pi}-1 f(θ)=πθ1
  • 在一个调制波周期内,调制波表达式: f ( ϕ ) = c o s ( ϕ ) f(\phi) = cos(\phi) f(ϕ)=cos(ϕ)
  • Ω ( ϕ ) \Omega(\phi) Ω(ϕ)表示在一个载波周期内的占空比
  • 假设高电平为 V D C V_{DC} VDC

在一个周期内,占空比 Ω ( ϕ ) \Omega(\phi) Ω(ϕ)可以表达为:

Ω ( ϕ ) π − 1 = c o s ( ϕ ) ⇒ Ω ( ϕ ) = π [ 1 + c o s ( ϕ ) ] \frac{\Omega(\phi)}{\pi}-1 = cos(\phi) \Rightarrow \Omega(\phi) = \pi[1+cos(\phi)] πΩ(ϕ)1=cos(ϕ)Ω(ϕ)=π[1+cos(ϕ)]

则,相电压表达式为:

V ( θ , ϕ ) = { V D C 0 ≤ θ ≤ Ω ( ϕ ) 0 Ω ( ϕ ) < θ ≤ 2 π \begin{aligned} V(\theta,\phi)=\left\{ \begin{array}{lcl} V_{DC} & & {0 \leq \theta\leq\Omega(\phi)}\\ 0 & & {\Omega(\phi) < \theta\leq 2\pi} \end{array} \right. \end{aligned} V(θ,ϕ)={VDC00θΩ(ϕ)Ω(ϕ)<θ2π

在这里插入图片描述

( a ) \qquad \qquad \qquad (a) (a)
在这里插入图片描述

( b ) \qquad \qquad \qquad (b) (b)
F i g . 2 单 边 调 制 P W M ( a ) 3 D 模 型 ; ( b ) 2 D 模 型 \qquad \qquad Fig.2 \quad 单边调制PWM (a)3D模型;(b)2D模型 Fig.2PWM(a)3D;(b)2D

2.2 三角波

(待补充)

3、DFS分析PWM谐波
3.1、单边调制谐波解析

根据双重傅里叶变换的复数表达式可以得到:

  • 直流分量

C 00 = 1 2 π 2 ∫ 0 2 π ∫ 0 2 π V ( θ , ϕ ) e j ( m θ + n ϕ ) d θ d ϕ = 1 2 π 2 ∫ 0 2 π ∫ 0 2 π V ( θ , ϕ ) d θ d ϕ = 1 2 π 2 ∫ 0 2 π ∫ 0 Ω ( ϕ ) V D C d θ d ϕ = 1 2 π 2 ∫ 0 2 π ∫ 0 π [ 1 + c o s ( ϕ ) ] V D C d θ d ϕ = V D C 2 π 2 ∫ 0 2 π π [ 1 + c o s ( ϕ ) ] d ϕ = V D C ( 2 ) C_{00} = \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{2\pi}V(\theta,\phi)e^{j(m\theta+n\phi)}d\theta d\phi \\ \qquad \\ \qquad= \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{2\pi}V(\theta,\phi)d\theta d\phi \\ \qquad\\ \qquad =\frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{\Omega(\phi)}V_{DC}d\theta d\phi= \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{ \pi[1+cos(\phi)]}V_{DC}d\theta d\phi \\ \qquad \\ \qquad =\frac{V_{DC}}{2\pi^2}\int_0^{2\pi} \pi[1+cos(\phi)]d\phi = \color{red}{}V_{DC} \qquad (2) C00=2π2102π02πV(θ,ϕ)ej(mθ+nϕ)dθdϕ=2π2102π02πV(θ,ϕ)dθdϕ=2π2102π0Ω(ϕ)VDCdθdϕ=2π2102π0π[1+cos(ϕ)]VDCdθdϕ=2π2VDC02ππ[1+cos(ϕ)]dϕ=VDC(2)

  • 调制波谐波解析

C 0 n = 1 2 π 2 ∫ 0 2 π ∫ 0 Ω ( ϕ ) V D C e j n ϕ d θ d ϕ = V D C 2 π 2 ∫ 0 2 π π [ 1 + c o s ( ϕ ) ] e j n ϕ d ϕ = V D C 2 π [ ∫ 0 2 π e j n ϕ d ϕ + ∫ 0 2 π c o s ( ϕ ) e j n ϕ d ϕ ] = V D C 2 π { 1 j n e j n ϕ ∣ 0 2 π ⏟ P 1 + ∫ 0 2 π c o s ϕ ( c o s n ϕ + j s i n n ϕ ) d ϕ ⏟ P 2 } C_{0n} = \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{\Omega(\phi)}V_{DC}e^{jn\phi}d\theta d\phi = \frac{V_{DC}}{2\pi^2}\int_0^{2\pi}\pi[1+cos(\phi)]e^{jn\phi}d\phi \\ \qquad \\ \qquad =\frac{V_{DC}}{2\pi}[\int_0^{2\pi}e^{jn\phi}d\phi + \int_0^{2\pi}cos(\phi)e^{jn\phi}d\phi] \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}\{\underbrace{\frac{1}{jn}e^{jn\phi}\bigg|_0^{2\pi}}_{P1} +\underbrace{\int_0^{2\pi}cos\phi(cosn\phi+jsin n\phi)d\phi}_{P2}\} C0n=2π2102π0Ω(ϕ)VDCejnϕdθdϕ=2π2VDC02ππ[1+cos(ϕ)]ejnϕdϕ=2πVDC[02πejnϕdϕ+02πcos(ϕ)ejnϕdϕ]=2πVDC{P1 jn1ejnϕ02π+P2 02πcosϕ(cosnϕ+jsinnϕ)dϕ}

上式P1部分在 n ≠ 0 n \neq 0 n=0时为 0 0 0,P2部分在 n ≠ 1 n \neq 1 n=1时为 0 0 0
n = 1 n=1 n=1时可得:

C 01 = V D C 2 π ∫ 0 2 π c o s ϕ ( c o s ϕ + j s i n ϕ ) d ϕ = V D C 2 π ( ∫ 0 2 π c o s ϕ c o s ϕ d ϕ + ∫ 0 2 π j c o s ϕ s i n ϕ d ϕ ) = V D C 2 π ( ∫ 0 2 π 1 + c o s ( 2 ϕ ) 2 d ϕ + ∫ 0 2 π j s i n ( 2 ϕ ) 4 d 2 ϕ ) = V D C 2 π π = V D C 2 ( 3 ) C_{01} = \frac{V_{DC}}{2\pi}\int_0^{2\pi}cos\phi(cos\phi+jsin \phi)d\phi \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}(\int_0^{2\pi}cos\phi cos\phi d\phi + \int_0^{2\pi}jcos\phi sin\phi d\phi) \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}(\int_0^{2\pi}\frac{1+cos(2\phi)}{2}d\phi + \int_0^{2\pi}j\frac{sin(2\phi)}{4} d2\phi) \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi}\pi = \color{red}\frac{V_{DC}}{2} \qquad (3) C01=2πVDC02πcosϕ(cosϕ+jsinϕ)dϕ=2πVDC(02πcosϕcosϕdϕ+02πjcosϕsinϕdϕ)=2πVDC(02π21+cos(2ϕ)dϕ+02πj4sin(2ϕ)d2ϕ)=2πVDCπ=2VDC(3)

  • 载波谐波解析

C m 0 = 1 2 π 2 ∫ 0 2 π ∫ 0 Ω ( ϕ ) V D C e j m θ d θ d ϕ = V D C 2 π 2 ∫ 0 2 π ∫ 0 Ω ( ϕ ) e j m θ d θ d ϕ = V D C 2 π 2 ∫ 0 2 π 1 j m e j m θ ∣ 0 π ( 1 + c o s ϕ ) d ϕ = V D C 2 j m π 2 ∫ 0 2 π ( e j m π ( 1 + c o s ϕ ) − 1 ) d ϕ = V D C 2 j m π 2 ( ∫ 0 2 π e j m π e j m π c o s ϕ d ϕ − ∫ 0 2 π d ϕ ) = V D C 2 j m π 2 [ ( − 1 ) m ∫ 0 2 π e j m π c o s ϕ d ϕ ⏟ R e f e r   t o   E q . ( 1 ) − 2 π ] = V D C 2 j m π 2 [ ( − 1 ) m 2 π J 0 ( m π ) − 2 π ] = V D C j m π [ ( − 1 ) m J 0 ( m π ) − 1 ] = j V D C m π [ 1 − ( − 1 ) m J 0 ( m π ) ] ( 4 ) C_{m0} = \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{\Omega(\phi)}V_{DC}e^{jm\theta}d\theta d\phi = \frac{V_{DC}}{2\pi^2}\int_0^{2\pi}\int_0^{\Omega(\phi)}e^{jm\theta}d\theta d\phi \\ \qquad \\ \qquad = \frac{V_{DC}}{2\pi^2}\int_0^{2\pi}\frac{1}{jm}e^{jm\theta}\bigg|_0^{\pi(1+cos\phi)} d\phi = \frac{V_{DC}}{2jm\pi^2}\int_0^{2\pi}(e^{jm\pi(1+cos\phi)}-1)d\phi \\ \qquad \\ \qquad = \frac{V_{DC}}{2jm\pi^2}(\int_0^{2\pi}e^{jm\pi}e^{jm\pi cos\phi}d\phi-\int_0^{2\pi}d\phi) \\ \qquad \\ \qquad = \frac{V_{DC}}{2jm\pi^2}[(-1)^m\underbrace{\int_0^{2\pi}e^{jm\pi cos\phi}d\phi}_{Refer \ to \ Eq.(1)}-2\pi] \\ \qquad \\ \qquad = \frac{V_{DC}}{2jm\pi^2}[(-1)^m2\pi J_0(m\pi)-2\pi] = \frac{V_{DC}}{jm\pi}[(-1)^mJ_0(m\pi)-1] \\ \qquad \\ \qquad = \color{red}{}j\frac{V_{DC}}{m\pi}[1-(-1)^mJ_0(m\pi)] \qquad (4) Cm0=2π2102π0Ω(ϕ)VDCejmθdθdϕ=2π2VDC02π0Ω(ϕ)ejmθdθdϕ=2π2VDC02πjm1ejmθ0π(1+cosϕ)dϕ=2jmπ2VDC02π(ejmπ(1+cosϕ)1)dϕ=2jmπ2VDC(02πejmπejmπcosϕdϕ02πdϕ)=2jmπ2VDC[(1)mRefer to Eq.(1) 02πejmπcosϕdϕ2π]=2jmπ2VDC[(1)m2πJ0(mπ)2π]=jmπVDC[(1)mJ0(mπ)1]=jmπVDC[1(1)mJ0(mπ)](4)

  • 边带谐波解析

C m n = 1 2 π 2 ∫ 0 2 π ∫ 0 2 π V D C e j ( m θ + n ϕ ) d θ d ϕ = V D C 2 π 2 ∫ 0 2 π ∫ 0 Ω ( ϕ ) e j ( m θ + n ϕ ) d θ d ϕ = V D C 2 j m π 2 ∫ 0 2 π e j n ϕ e j m θ ∣ 0 π ( 1 + c o s ϕ ) d ϕ = V D C 2 j m π 2 ∫ 0 2 π e j n ϕ ( e j m π ( 1 + c o s ϕ ) − 1 ) d ϕ = V D C 2 j m π 2 ( ∫ 0 2 π e j n ϕ e j m π ( 1 + c o s ϕ ) d ϕ − ∫ 0 2 π e j n ϕ d ϕ ) = V D C 2 j m π 2 [ ( − 1 ) m ∫ 0 2 π e j n ϕ e j m π c o s ϕ d ϕ ] = V D C 2 j m π 2 ( − 1 ) m ( ∫ 0 2 π e j m π c o s ϕ c o s n ϕ d ϕ ⏟ P 1 + j ∫ 0 2 π e j m π c o s ϕ s i n n ϕ d ϕ ) ⏟ P 2 = P 2 = 0 P 1 = 2 π j n J n ( m π ) V D C m π ( − 1 ) m + 1 j n + 1 J n ( m π ) = e j π 2 ( n + 1 ) = − s i n n π 2 + j c o s n π 2 j n + 1 = ( e j π ) n + 1 = e j π 2 ( n + 1 ) ( − 1 ) m V D C m π J n ( m π ) ( s i n n π 2 − j c o s n π 2 ) ( 5 ) C_{mn} = \frac{1}{2\pi^2}\int_0^{2\pi}\int_0^{2\pi} V_{DC}e^{j(m\theta+n\phi)}d\theta d\phi = \frac{V_{DC}}{2\pi^2}\int_0^{2\pi}\int_0^{\Omega(\phi)}e^{j(m\theta+n\phi)}d\theta d\phi \\ \qquad \\ \qquad = \frac{V_{DC}}{2jm\pi^2}\int_0^{2\pi}e^{jn\phi}e^{jm\theta}\bigg|_0^{\pi(1+cos\phi)} d\phi = \frac{V_{DC}}{2jm\pi^2}\int_0^{2\pi}e^{jn\phi}(e^{jm\pi(1+cos\phi)}-1) d\phi \\ \qquad \\ \qquad = \frac{V_{DC}}{2jm\pi^2}(\int_0^{2\pi}e^{jn\phi}e^{jm\pi(1+cos\phi)}d\phi - \int_0^{2\pi}e^{jn\phi}d\phi) \\ \qquad \\ \qquad = \frac{V_{DC}}{2jm\pi^2}[(-1)^m\int_0^{2\pi}e^{jn\phi}e^{jm\pi cos\phi}d\phi] \\ \qquad \\ \qquad = \frac{V_{DC}}{2jm\pi^2}(-1)^m\underbrace{(\int_0^{2\pi}e^{jm\pi cos\phi}cosn\phi d\phi}_{P1} + j \underbrace{\int_0^{2\pi}e^{jm\pi cos\phi}sinn\phi d\phi)}_{P2} \\ \qquad \\ \qquad \xlongequal[P2=0]{P1= 2\pi j^nJ_n(m\pi)} \frac{V_{DC}}{m\pi}(-1)^{m+1} j^{n+1}J_n(m\pi) \\ \qquad \\ \qquad \xlongequal[e^{j\frac{\pi}{2}(n+1)} = -sin\frac{n\pi}{2}+jcos\frac{n\pi}{2}]{j^{n+1} = (\sqrt{e^{j\pi}})^{n+1} = e^{j\frac{\pi}{2}(n+1)}} \color{red}{} (-1)^m\frac{V_{DC}}{m\pi}J_n(m\pi)(sin\frac{n\pi}{2}-jcos\frac{n\pi}{2}) \qquad (5) Cmn=2π2102π02πVDCej(mθ+nϕ)dθdϕ=2π2VDC02π0Ω(ϕ)ej(mθ+nϕ)dθdϕ=2jmπ2VDC02πejnϕejmθ0π(1+cosϕ)dϕ=2jmπ2VDC02πejnϕ(ejmπ(1+cosϕ)1)dϕ=2jmπ2VDC(02πejnϕejmπ(1+cosϕ)dϕ02πejnϕdϕ)=2jmπ2VDC[(1)m02πejnϕejmπcosϕdϕ]=2jmπ2VDC(1)mP1 (02πejmπcosϕcosnϕdϕ+jP2 02πejmπcosϕsinnϕdϕ)P1=2πjnJn(mπ) P2=0mπVDC(1)m+1jn+1Jn(mπ)jn+1=(ejπ )n+1=ej2π(n+1) ej2π(n+1)=sin2nπ+jcos2nπ(1)mmπVDCJn(mπ)(sin2nπjcos2nπ)(5)

3.2 单边调制谐波绘制

\quad 基于上述的推导可以得到单边调制不同成分的解析解, E q . ( 2 ) Eq.(2) Eq.(2)为直流分量, E q . ( 3 ) Eq.(3) Eq.(3)为调制信号分量; E q . ( 4 ) Eq.(4) Eq.(4)为载波谐波分量; E q . ( 5 ) Eq.(5) Eq.(5)为调制波与载波共同作用的谐波分量,下面通过 m a t l a b matlab matlab绘制上述的图形。

  • 绘制bessel函数图形(利用 m a t l a b matlab matlab函数 b e s s e l j ( n u , z ) besselj(nu,z) besselj(nu,z))

在这里插入图片描述

F i g . 3 第 一 类 贝 塞 尔 函 数 \qquad \qquad Fig.3 \quad 第一类贝塞尔函数 Fig.3

  • 载波谐波分量绘制

在这里插入图片描述

  • 边带谐波分量绘制

在这里插入图片描述

4 带死区的PWM谐波分析(待补充)
4.1 单边调制
  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值