数学物理方法 03 无穷级数

 

§3.1 

3.1.1 

1. 
f 0 +f 1 ++f k += k=0  f k ,(f k ) 

2. 
F k = n=0 k f n ,lim k F k =F, k=0  f k F. 

3. 
 k=0  u k , k=0  v k  

4.Cauchy 
ε>0,K,使k>K|F k+p F k |=|f k+1 +f k+2 ++f k+p |<ε,(p=1,2,) 

5.:lim k f k =0 
e.g. k=1  az k1 (a0),|z|1|az k1 ||a|0 
 k=1  az k1 (a0). 

6. 
(1): k=0  |f k |, k=0  f k . 
(2): 
, 
, 
D  Alembert:K,k,k>K,|f k+1 f k  |<ρ(ρ<1), k=0  f k ;lim k |f k+1 f k  |=l, k=0  f k l<1,;l>1,;l=1,. 
:f k f k+1  =1+μk +O(1k λ  ),λ>1, k=0  |f k |,Reμ>1,. 

3.1.2 

1.:f 0 (z)+f 1 (z)++f k (z)+= k=0  f k (z) 
2. 
(1).ε>0,K(ε)(z),ϵk>K,zσ|F(z)F k (z)|<ε, k=0  f k (z)σF(z). 
(2):Cauchy 
ε>0,K(ε),ϵk>K,zσ|F k+p F k |=|f k+1 (z)+f k+2 (z)++f k+p (z)|<ε,(p=1,2,) 
3. 
(1)M:σ|f k (z)|M k ,M k >0(z), k=0  M k , k=0  f k . 
(2):σf k (z), k=0  f k (z)F(z),F(z). 
(3):lf k (z), k=0  f k (z)F(z), l F(z)dz= k=0   l f k (z)dz 
(4):σf k (z),σ ¯   σ k=0  f k (z)F(z),F (n) (z)= k=0  f (n) k (z) 

§3.2 

3.2.1 

a 0 +a 1 (zb)+a 2 (zb) 2 += k=0  a k (zb) k  

3.2.2 

1.Abel: k=0  a k (zb) k z=z 0 ,|zb|<|z 0 b|,|zz 0 |ρ(ρ|z 0 b|). 
2.: k=0  a k (zb) k z=z 1 ,|zb|>|z 1 b|. 
3. 
 k=0  a k (zb) k ,|zb|=R,|zb|<R,;|zb|>R,;|zb|=R,.R. 
4. 
1)R=lim k ∣ ∣ ∣ a k a k+1  ∣ ∣ ∣ ;2)R=lim k 1|a k | − − −   k   
1. k=0  z k R=?, k=0  z k =11z ,|z|<1 

3.2.3 

1. 
 k=0  a k (zb) k =f(z),f(z)H(|zb|<R), l f(z)dz= k=0  a k  l (zb) k dzR  =R  =R l f (n) (z)dz= k=0  a k d n dz n   l (zb) k dz 
2. 
 k=0  a k (zb) k  n=0  c n (zd) n = k=0   n=0  a k c n (zd) k+n  

§3.3 

3.3.1 

f(z)H(σ),|zb|<Rσ,f(z)= k=0  a k (zb) k ,a k =f (k) (b)k! ,. 

3.3.2 

1.R=lim k ∣ ∣ ∣ a k a k+1  ∣ ∣ ∣  
2.R=|ab|,af(z)b 

3.3.3 

1. 
3.e z z=0 
:e z = k=0  z k k! ,|z|< 
4.11z z=0. 
:11z = k=0  z k ,|z|<1 
2. 
(1) 
5.sinzz=0. 
:sinz= k=0  (1) k (2k+1)! z 2k+1 ,|z|< 
(2) 
6coszz=0. 
:cosz= k=0  (1) k (2k)! z 2k ,|z|< 
(3) 
7.11z 2  z=0. 
:11z 2  = k=0  z 2k ,|z|<1 
(4) 
11z 2  z=0. 
(5) 
9.seczz=0. 
:secz=1+12! z 2 +54! z 4 +,|z|<π2  

3.3.4 

10.Ln(1+z)ln(1+z)z=0. 
d k dz k  [ln(1+z)]= k=1  (1) k1 (k1)!(1+z) k  ,|z|<1 
:ln(1+z)= k=1  (1) k1 k z k ,|z|<1 

§3.4 

: k=  c k (zb) k = k= 1 c k (zb) k + k=0  c k (zb) k . 

3.4.1 

:r<|zb|<R.r<|zb|<R,r  |zb|R  (r  <r<R  <R). 

3.4.2Laurant 

f(z)r<|zb|<R,f(z)= k=  c k (zb) k ,r<|zb|<R,,c k =12πi  l f(z)(zb) k+1  dz,l:|zb|=ρ(r<r  <ρ<R  <R),. 
:(1)b,,2<|z|<f(z)=1(z1)(z2) = k=1  (2 k1 1)1z k   
(2):c k f (k) (b)k!  
(3). 

3.4.3 

aa  f(z), k=  c k (zb) k |ab|<|zb|<|a  b|(|a  b|>|ab|a=b),f(z)=1z(z1)(z32 )  
 k=  c k z k ,(0<|z|<1;1<|z|<1.5;1.5<|z|) 
 k=  c k (z1) k ,(0<|z1|<0.5;0.5<|z1|) 
 k=  c k (z1.5) k ,(0<|z1.5|<0.5;0.5<|z1.5|) 

3.4.4 

1.() 
1.:ch(z+1z )=c 0 + k=0  c k (z k +z k ),c k =12π  2π 0 coskφch(2cosφ)dφ 
f(z)= k=  c k (zb) k ,r<|zb|<R,c k =12πi  l f(z)(zb) k+1  dz 

2.T 
2.f(z)=1(z1)(z2) =1z2 1z1  
(1)z=0|z|<1:f(z)= k=0  (112 k+1  )z k ; 
(2)z=0:1<|z|<2:f(z)= k=0  (1z k+1  +12 k+1  z k ); 
(3)|z1|>1|z1|>1:f(z)= k=1  1(z1) k+1  ; 
(4):|z|>2:f(z)= k=0  (2 k 1)1z k+1  ; 
(5) 

§3.5 

3.5.1 

1. 
|zb|<εbf(z),zbf(z). 
e.g.f(z)=1z(z1) z=0,z=1 

2. 
|zb|<ε,f(z)z=b,bf(z). 
e.g.f(z)=1sin1z  z=0 

3.5.2 

z=bf(z),f(z)= k=  C k (zb) k ,0<|zb|<R 

1. 
f(z)= k=0  C k (zb) k ,0<|zb|<R(),z=bf(z) 
e.g.f(z)=sinzz ,z=0 
:(1)b:f(z)= k=0  C k (zb) k lim zb f(z)=f(z)b. 
(2). 
e.g.F(z)=⎧ ⎩ ⎨ f(z),zblim zb f(z),z=b  

2. 
f(z)=lim k=m  C k (zb) k ,0<|zb|<R(),z=bf(z).C m 0,z=bf(z)m.1. 
e.g.f(z)=1z 2 (z1)  
:(1)b:lim zb f(z)= 
e.g.f(z)=zsin 2 z  
(2)bm:f(z)= k=m  C k (zb) k (C m 0)f(z)=φ(z)(zb) m  [φ(z)H(|zb|<R),φ(b)0]g(z)=1f(z) z=bm.() 
e.g.f(z)=1z 2 (z1) ,z=0,z=1. 
()::g(z)σa,g(a)=0,ag(z).g(a)=g  (a)=g  (a)==g (m1) (a)=0,g (m) (a)0,ag(z)m. 
(3)z=bf(z),lim zb [(zb) n f(z)]=,bf(z)n. 
e.g.f(z)=zsin 2 z , 
lim znπ zsin 2 z =,z=nπ(n=0,±1,). 
lim znπ (znπ)zsin 2 z =lim znπ 2znπsin2z =⎧ ⎩ ⎨ lim z0 2zsin2z =1,n=0,n0  
lim znπ (znπ) 2 zsin 2 z =lim znπ 2(znπ)z(znπ) 2 2sinzcosz  
=lim znπ (znπ)(3znπ)sin2z  
=lim znπ 4z2nπ+z 2 n 2 π 2 2cos2z =2nπ2cos2nπ =nπ(n0) 
z=0,z=nπ(n=±1,±2,). 

3. 
f(z)= k= 1 C k (zb) k +C 0 +C 1 (zb) 2 +,0<|zb|<R(),z=bf(z). 
e.g.f(z)=e 1z  =1+1z +12!z 2  +,0<|z|<,z=0 
:blim zb f(z)= 
e.g.lim z0 e 1z  ={,(x0 + ,y=0)0,(x0  ,y=0)  

3.5.3 

1. 
R>0,|z|>Rf(z),f(z)z=. 
e.g.f(z)=1z 2 (z1) z= 

2. 
R>0,|z|>Rf(z)z=,R<|z|<.z=f(z) 
e.g.f(z)=sinzz z= 

3. 
z=1z ,z=t=0,f(z)f(1t )=φ(t), 
|z|>R|t|<1R =δ 
R<|z|<0<|t|<δ 
f(z){|z|>RT,R<|z|<L φ(t){|t|<δT,0<|t|<δL  

(1): 
f(z)= k= 1 c k z k +c 0 ,R<|z|<(),z=f(z). 
e.g.f(z)=zsin1z z=. 
(2) 
f(z)= k=1 m c k z k +c 0 +c 1 1z +c 2 1z 2  +,R<|z|<(m),z=f(z)m. 
e.g.P(z)=a n z n +a n1 z n1 ++a 0 z=n. 
(3) 
f(z)= k=0  c k z k +c 1 1z +c 2 1z 2  +,R<|z|<(),z=f(z). 
e.g.e z = k=0  1k! z k ,|z|<z=. 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值