MTEB - Embedding 模型排行榜

本文介绍了MTEB(MassiveTextEmbeddingBenchmark)项目,一个大规模文本嵌入评估基准,使用MTEBPytorch库进行安装和应用。通过SentenceTransformer模型执行任务评估,如Banking77Classification,并演示了如何在多GPU环境中并行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


关于 MTEB

MTEB : Massive Text Embedding Benchmark


中文榜单(2024-05-03)

在这里插入图片描述


英文

在这里插入图片描述


MTEB 任务和数据集概览

多模态标记为紫色。
在这里插入图片描述


使用 MTEB Pythont 库

Installation

pip install mteb

使用

from mteb import MTEB
from sentence_transformers import SentenceTransformer

# Define the sentence-transformers model name
model_name = "average_word_embeddings_komninos"
# or directly from huggingface:
# model_name = "sentence-transformers/all-MiniLM-L6-v2"

model = SentenceTransformer(model_name)
evaluation = MTEB(tasks=["Banking77Classification"])
results = evaluation.run(model, output_folder=f"results/{model_name}")

  • 使用命令行
mteb --available_tasks

mteb -m sentence-transformers/all-MiniLM-L6-v2 \
    -t Banking77Classification  \
    --verbosity 3

# if nothing is specified default to saving the results in the results/{model_name} folder
  • Using multiple GPUs in parallel can be done by just having a custom encode function that distributes the inputs to multiple GPUs like e.g. here or here.

伊织 2024-05-03(五)

### 当前流行的Embedding模型及其排名 合合信息的Embedding模型MTEB中文榜单上取得了第一名的成绩[^1]。这表明该模型在中国市场的文本嵌入任务中表现出色。 MTEB(Massive Text Embedding Benchmark)是一个综合性的评估体系,用于衡量不同文本嵌入模型的表现。此平台提供了详细的排行榜单,涵盖了多种语言环境下的多个数据集测试结果[^3]。通过访问[MTEB GitHub页面](https://github.com/embeddings-benchmark/mteb)或[Hugging Face空间](https://huggingface.co/spaces/mteb/leaderboard),可以查看最新的全球范围内各款Embedding模型的具体评分与名次变化情况。 对于希望构建基于检索增强生成(Retrieval-Augmented Generation, RAG)的应用程序而言,在选择合适的Embedding模型时需考虑具体应用场景以及可用资源状况。不同的Embedding模型具有各自的特点和适用范围;因此,针对特定的任务需求来挑选最适宜的预训练模型,并对其进行必要的调整优化是非常重要的举措之一[^2]。 ```python import requests from bs4 import BeautifulSoup def fetch_mteb_leaderboard(): url = "https://huggingface.co/spaces/mteb/leaderboard" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 假设表格位于第一个<table>标签内 table = soup.find('table') rows = table.find_all('tr')[1:] # 跳过表头 leaderboard = [] for row in rows: columns = row.find_all('td') model_name = columns[0].text.strip() score = float(columns[-1].text.strip()) leaderboard.append((model_name, score)) return sorted(leaderboard, key=lambda x: x[1], reverse=True) # 获取并打印最新排行榜前十位 top_models = fetch_mteb_leaderboard()[:10] for idx, (name, score) in enumerate(top_models, start=1): print(f"{idx}. {name}: {score:.4f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值