MTEB - Embedding 模型排行榜

本文介绍了MTEB(MassiveTextEmbeddingBenchmark)项目,一个大规模文本嵌入评估基准,使用MTEBPytorch库进行安装和应用。通过SentenceTransformer模型执行任务评估,如Banking77Classification,并演示了如何在多GPU环境中并行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


关于 MTEB

MTEB : Massive Text Embedding Benchmark


中文榜单(2024-05-03)

在这里插入图片描述


英文

在这里插入图片描述


MTEB 任务和数据集概览

多模态标记为紫色。
在这里插入图片描述


使用 MTEB Pythont 库

Installation

pip install mteb

使用

from mteb import MTEB
from sentence_transformers import SentenceTransformer

# Define the sentence-transformers model name
model_name = "average_word_embeddings_komninos"
# or directly from huggingface:
# model_name = "sentence-transformers/all-MiniLM-L6-v2"

model = SentenceTransformer(model_name)
evaluation = MTEB(tasks=["Banking77Classification"])
results = evaluation.run(model, output_folder=f"results/{model_name}")

  • 使用命令行
mteb --available_tasks

mteb -m sentence-transformers/all-MiniLM-L6-v2 \
    -t Banking77Classification  \
    --verbosity 3

# if nothing is specified default to saving the results in the results/{model_name} folder
  • Using multiple GPUs in parallel can be done by just having a custom encode function that distributes the inputs to multiple GPUs like e.g. here or here.

伊织 2024-05-03(五)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值