文章目录
一、关于 FunASR
FunASR希望在语音识别的学术研究和工业应用之间架起一座桥梁。通过发布工业级语音识别模型的训练和微调,研究人员和开发人员可以更方便地进行语音识别模型的研究和生产,并推动语音识别生态的发展。让语音识别更有趣!
核心功能
- FunASR是一个基础语音识别工具包,提供多种功能,包括语音识别(ASR)、语音端点检测(VAD)、标点恢复、语言模型、说话人验证、说话人分离和多人对话语音识别等。FunASR提供了便捷的脚本和教程,支持预训练好的模型的推理与微调。
- 我们在ModelScope与huggingface上发布了大量开源数据集或者海量工业数据训练的模型,可以通过我们的模型仓库了解模型的详细信息。代表性的Paraformer非自回归端到端语音识别模型具有高精度、高效率、便捷部署的优点,支持快速构建语音识别服务,详细信息可以阅读(服务部署文档)。
模型仓库
FunASR开源了大量在工业数据上预训练模型,您可以在模型许可协议下自由使用、复制、修改和分享FunASR模型,下面列举代表性的模型,更多模型请参考 模型仓库。
(注:⭐ 表示ModelScope模型仓库,🤗 表示Huggingface模型仓库,🍀表示OpenAI模型仓库)
模型名字 | 任务详情 | 训练数据 | 参数量 |
---|---|---|---|
SenseVoiceSmall (⭐ 🤗 ) | 多种语音理解能力,涵盖了自动语音识别(ASR)、语言识别(LID)、情感识别(SER)以及音频事件检测(AED) | 400000小时,中文 | 330M |
paraformer-zh (⭐ 🤗 ) | 语音识别,带时间戳输出,非实时 | 60000小时,中文 | 220M |
paraformer-zh-streaming ( ⭐ 🤗 ) | 语音识别,实时 | 60000小时,中文 | 220M |
paraformer-en ( ⭐ 🤗 ) | 语音识别,非实时 | 50000小时,英文 | 220M |
conformer-en ( ⭐ 🤗 ) | 语音识别,非实时 | 50000小时,英文 | 220M |
ct-punc ( ⭐ 🤗 ) | 标点恢复 | 100M,中文与英文 | 290M |
fsmn-vad ( ⭐ 🤗 ) | 语音端点检测,实时 | 5000小时,中文与英文 | 0.4M |
fsmn-kws ( ⭐ ) | 语音唤醒,实时 | 5000小时,中文 | 0.7M |
fa-zh ( ⭐ 🤗 ) | 字级别时间戳预测 | 50000小时,中文 | 38M |
cam++ ( ⭐ 🤗 ) | 说话人确认/分割 | 5000小时 | 7.2M |
Whisper-large-v3 (⭐ 🍀 ) | 语音识别,带时间戳输出,非实时 | 多语言 | 1550 M |
Whisper-large-v3-turbo (⭐ 🍀 ) | 语音识别,带时间戳输出,非实时 | 多语言 | 809 M |
Qwen-Audio (⭐ 🤗 ) | 音频文本多模态大模型(预训练) | 多语言 | 8B |
Qwen-Audio-Chat (⭐ 🤗 ) | 音频文本多模态大模型(chat版本) | 多语言 | 8B |
emotion2vec+large (⭐ 🤗 ) | 情感识别模型 | 40000小时,4种情感类别 | 300M |
最新动态
- 2024/10/29: 中文实时语音听写服务 1.12 发布,2pass-offline模式支持SensevoiceSmall模型;详细信息参阅(部署文档)
- 2024/10/10:新增加Whisper-large-v3-turbo模型支持,多语言语音识别/翻译/语种识别,支持从 modelscope仓库下载,也支持从 openai仓库下载模型。
- 2024/09/26: 中文离线文件转写服务 4.6、英文离线文件转写服务 1.7、中文实时语音听写服务 1.11 发布,修复ONNX内存泄漏、支持SensevoiceSmall onnx模型;中文离线文件转写服务GPU 2.0 发布,修复显存泄漏; 详细信息参阅(部署文档)
- 2024/09/25:新增语音唤醒模型,支持fsmn_kws, fsmn_kws_mt, sanm_kws, sanm_kws_streaming 4个模型的微调和推理。
- 2024/07/04:SenseVoice 是一个基础语音理解模型,具备多种语音理解能力,涵盖了自动语音识别(ASR)、语言识别(LID)、情感识别(SER)以及音频事件检测(AED)。
- 2024/07/01:中文离线文件转写服务GPU版本 1.1发布,优化bladedisc模型兼容性问题;详细信息参阅(部署文档)
- 2024/06/27:中文离线文件转写服务GPU版本 1.0发布,支持动态batch,支持多路并发,在长音频测试集上单线RTF为0.0076,多线加速比为1200+(CPU为330+);详细信息参阅(部署文档)
- 2024/05/15:新增加情感识别模型,emotion2vec+large,emotion2vec+base,emotion2vec+seed,输出情感类别为:生气/angry,开心/happy,中立/neutral,难过/sad。
- 2024/05/15: 中文离线文件转写服务 4.5、英文离线文件转写服务 1.6、中文实时语音听写服务 1.10 发布,适配FunASR 1.0模型结构;详细信息参阅(部署文档)
- 2024/03/05:新增加Qwen-Audio与Qwen-Audio-Chat音频文本模态大模型,在多个音频领域测试榜单刷榜,中支持语音对话,详细用法见 示例。
- 2024/03/05:新增加Whisper-large-v3模型支持,多语言语音识别/翻译/语种识别,支持从 modelscope仓库下载,也支持从 openai仓库下载模型。
- 2024/03/05: 中文离线文件转写服务 4.4、英文离线文件转写服务 1.5、中文实时语音听写服务 1.9 发布,docker镜像支持arm64平台,升级modelscope版本;详细信息参阅(部署文档)
- 2024/01/30:funasr-1.0发布,更新说明文档
展开日志
- 2024/01/30:新增加情感识别 模型链接,原始模型 repo.
- 2024/01/25: 中文离线文件转写服务 4.2、英文离线文件转写服务 1.3,优化vad数据处理方式,大幅降低峰值内存占用,内存泄漏优化;中文实时语音听写服务 1.7 发布,客户端优化;详细信息参阅(部署文档)
- 2024/01/09: funasr社区软件包windows 2.0版本发布,支持软件包中文离线文件转写4.1、英文离线文件转写1.2、中文实时听写服务1.6的最新功能,详细信息参阅(FunASR社区软件包windows版本)
- 2024/01/03: 中文离线文件转写服务 4.0 发布,新增支持8k模型、优化时间戳不匹配问题及增加句子级别时间戳、优化英文单词fst热词效果、支持自动化配置线程参数,同时修复已知的crash问题及内存泄漏问题,详细信息参阅(部署文档)
- 2024/01/03: 中文实时语音听写服务 1.6 发布,2pass-offline模式支持Ngram语言模型解码、wfst热词,同时修复已知的crash问题及内存泄漏问题,详细信息参阅(部署文档)
- 2024/01/03: 英文离线文件转写服务 1.2 发布,修复已知的crash问题及内存泄漏问题,详细信息参阅(部署文档)
- 2023/12/04: funasr社区软件包windows 1.0版本发布,支持中文离线文件转写、英文离线文件转写、中文实时听写服务,详细信息参阅(FunASR社区软件包windows版本)
- 2023/11/08:中文离线文件转写服务3.0 CPU版本发布,新增标点大模型、Ngram语言模型与wfst热词,详细信息参阅(部署文档)
- 2023/10/17: 英文离线文件转写服务一键部署的CPU版本发布,详细信息参阅(部署文档)
- 2023/10/13: SlideSpeech: 一个大规模的多模态音视频语料库,主要是在线会议或者在线课程场景,包含了大量与发言人讲话实时同步的幻灯片。
- 2023.10.10: Paraformer-long-Spk模型发布,支持在长语音识别的基础上获取每句话的说话人标签。
- 2023.10.07: FunCodec: FunCodec提供开源模型和训练工具,可以用于音频离散编码,以及基于离散编码的语音识别、语音合成等任务。
- 2023.09.01: 中文离线文件转写服务2.0 CPU版本发布,新增ffmpeg、时间戳与热词模型支持,详细信息参阅(部署文档)
- 2023.08.07: 中文实时语音听写服务一键部署的CPU版本发布,详细信息参阅(部署文档)
- 2023.07.17: BAT一种低延迟低内存消耗的RNN-T模型发布,详细信息参阅(BAT)
- 2023.06.26: ASRU2023 多通道多方会议转录挑战赛2.0完成竞赛结果公布,详细信息参阅(M2MeT2.0)
二、安装教程
- 安装funasr之前,确保已经安装了下面依赖环境:
python>=3.8
torch>=1.13
torchaudio
- pip安装
pip3 install -U funasr
- 或者从源代码安装
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip3 install -e ./
如果需要使用工业预训练模型,安装modelscope与huggingface_hub(可选)
pip3 install -U modelscope huggingface huggingface_hub
三、快速开始
1、可执行命令行
funasr ++model=paraformer-zh ++vad_model="fsmn-vad" ++punc_model="ct-punc" ++input=asr_example_zh.wav
注:支持单条音频文件识别,也支持文件列表,列表为kaldi风格wav.scp:wav_id wav_path
2、非实时语音识别
2.1 SenseVoice
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
model_dir = "iic/SenseVoiceSmall"
model = AutoModel(
model=model_dir,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 30000},
device="cuda:0",
)
# en
res = model.generate(
input=f"{model.model_path}/example/en.mp3",
cache={},
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
use_itn=True,
batch_size_s=60,
merge_vad=True, #
merge_length_s=15,
)
text = rich_transcription_postprocess(res[0]["text"])
print(text)
参数说明:
model_dir
:模型名称,或本地磁盘中的模型路径。vad_model
:表示开启VAD,VAD的作用是将长音频切割成短音频,此时推理耗时包括了VAD与SenseVoice总耗时,为链路耗时,如果需要单独测试SenseVoice模型耗时,可以关闭VAD模型。vad_kwargs
:表示VAD模型配置,max_single_segment_time
: 表示vad_model
最大切割音频时长, 单位是毫秒ms。use_itn
:输出结果中是否包含标点与逆文本正则化。batch_size_s
表示采用动态batch,batch中总音频时长,单位为秒s。merge_vad
:是否将 vad 模型切割的短音频碎片合成,合并后长度为merge_length_s
,单位为秒s。ban_emo_unk
:禁用emo_unk标签,禁用后所有的句子都会被赋与情感标签。
2.2 Paraformer
from funasr import AutoModel
# paraformer-zh is a multi-functional asr model
# use vad, punc, spk or not as you need
model = AutoModel(model="paraformer-zh", vad_model="fsmn-vad", punc_model="ct-punc",
# spk_model="cam++"
)
res = model.generate(input=f"{model.model_path}/example/asr_example.wav",
batch_size_s=300,
hotword='魔搭')
print(res)
注:hub
:表示模型仓库,ms
为选择modelscope下载,hf
为选择huggingface下载。
3、实时语音识别
from funasr import AutoModel
chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
encoder_chunk_look_back = 4 #number of chunks to lookback for encoder self-attention
decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cross-attention
model = AutoModel(model="paraformer-zh-streaming")
import soundfile
import os
wav_file = os.path.join(model.model_path, "example/asr_example.wav")
speech, sample_rate = soundfile.read(wav_file)
chunk_stride = chunk_size[1] * 960 # 600ms
cache = {}
total_chunk_num = int(len((speech)-1)/chunk_stride+1)
for i in range(total_chunk_num):
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
is_final = i == total_chunk_num - 1
res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
print(res)
注:chunk_size
为流式延时配置,[0,10,5]
表示上屏实时出字粒度为10*60=600ms
,未来信息为5*60=300ms
。每次推理输入为600ms
(采样点数为16000*0.6=960
),输出为对应文字,最后一个语音片段输入需要设置is_final=True
来强制输出最后一个字。
4、语音端点检测(非实时)
from funasr import AutoModel
model = AutoModel(model="fsmn-vad")
wav_file = f"{model.model_path}/example/vad_example.wav"
res = model.generate(input=wav_file)
print(res)
注:VAD模型输出格式为:[[beg1, end1], [beg2, end2], .., [begN, endN]]
,其中begN/endN
表示第N
个有效音频片段的起始点/结束点,
单位为毫秒。
5、语音端点检测(实时)
from funasr import AutoModel
chunk_size = 200 # ms
model = AutoModel(model="fsmn-vad")
import soundfile
wav_file = f"{model.model_path}/example/vad_example.wav"
speech, sample_rate = soundfile.read(wav_file)
chunk_stride = int(chunk_size * sample_rate / 1000)
cache = {}
total_chunk_num = int(len((speech)-1)/chunk_stride+1)
for i in range(total_chunk_num):
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
is_final = i == total_chunk_num - 1
res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
if len(res[0]["value"]):
print(res)
注:流式VAD模型输出格式为4种情况:
[[beg1, end1], [beg2, end2], .., [begN, endN]]
:同上离线VAD输出结果。[[beg, -1]]
:表示只检测到起始点。[[-1, end]]
:表示只检测到结束点。[]
:表示既没有检测到起始点,也没有检测到结束点
输出结果单位为毫秒,从起始点开始的绝对时间。
6、标点恢复
from funasr import AutoModel
model = AutoModel(model="ct-punc")
res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
print(res)
7、时间戳预测
from funasr import AutoModel
model = AutoModel(model="fa-zh")
wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/text.txt"
res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
print(res)
8、情感识别
from funasr import AutoModel
model = AutoModel(model="emotion2vec_plus_large")
wav_file = f"{model.model_path}/example/test.wav"
res = model.generate(wav_file, output_dir="./outputs", granularity="utterance", extract_embedding=False)
print(res)
四、导出ONNX
1、从命令行导出
funasr-export ++model=paraformer ++quantize=false
2、从Python导出
from funasr import AutoModel
model = AutoModel(model="paraformer")
res = model.export(quantize=False)
3、测试ONNX
# pip3 install -U funasr-onnx
from funasr_onnx import Paraformer
model_dir = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=1, quantize=True)
wav_path = ['~/.cache/modelscope/hub/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
result = model(wav_path)
print(result)
更多例子请参考 样例
五、服务部署
FunASR支持预训练或者进一步微调的模型进行服务部署。目前支持以下几种服务部署:
- 中文离线文件转写服务(CPU版本),已完成
- 中文流式语音识别服务(CPU版本),已完成
- 英文离线文件转写服务(CPU版本),已完成
- 中文离线文件转写服务(GPU版本),进行中
- 更多支持中
详细信息可以参阅(服务部署文档)。
伊织 2025-01-17(五)