简介
做计算机视觉也已经很久了,说起来接触深度学习的时间却并不是很多。在这一年的时间里,阅读的最新的文献确实大部分都与深度学习相关,这其实给人带来了很大的困惑。——是否,在未来,计算机视觉就一定要做深度学习?
我从网上搜集了一下别人的看法。当然,如果你直接搜索“计算机视觉”,十条检索里有9条半都会涉及到“深度学习”。我从中看到了一篇博客(为什么深度学习仍未取代传统的计算机视觉技术?),18年发表,放到现在可能会有一定的过时,但是还是能体会到不同的关于概念上的区别。在这里摘取并总结有关“传统的计算机视觉”与“基于深度学习的计算机视觉”的区别,希望能给大家选择方向的时候,增加一些参考依据。
1. 区别
下图描述了特征提取(传统的计算机视觉,以下简称“传统”)和端到端学习(基于深度学习的计算机视觉,以下简称“深度学习”)的区别:
那么,传统与深度,分别有哪些算法呢?
传统中,特征提取是很重要的一步,在特征提取过程中,会涉及到比如:边缘检测、角点检测、对象检测等,这些算法都属于传统的计算机视觉