CV | 传统的计算机视觉与基于深度学习的计算机视觉的区别(简述)

本文探讨了深度学习在计算机视觉领域的崛起,分析其与传统计算机视觉技术的区别及优势。强调了深度学习对大数据的依赖及其在复杂问题上的优越性,同时指出了传统方法在特定场景下的不可替代性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

做计算机视觉也已经很久了,说起来接触深度学习的时间却并不是很多。在这一年的时间里,阅读的最新的文献确实大部分都与深度学习相关,这其实给人带来了很大的困惑。——是否,在未来,计算机视觉就一定要做深度学习?

我从网上搜集了一下别人的看法。当然,如果你直接搜索“计算机视觉”,十条检索里有9条半都会涉及到“深度学习”。我从中看到了一篇博客(为什么深度学习仍未取代传统的计算机视觉技术?),18年发表,放到现在可能会有一定的过时,但是还是能体会到不同的关于概念上的区别。在这里摘取并总结有关“传统的计算机视觉”与“基于深度学习的计算机视觉”的区别,希望能给大家选择方向的时候,增加一些参考依据。

1. 区别

下图描述了特征提取(传统的计算机视觉,以下简称“传统”)和端到端学习(基于深度学习的计算机视觉,以下简称“深度学习”)的区别:
在这里插入图片描述
那么,传统与深度,分别有哪些算法呢?

传统中,特征提取是很重要的一步,在特征提取过程中,会涉及到比如:边缘检测、角点检测、对象检测等,这些算法都属于传统的计算机视觉

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值