Introduction
(1)
Now, proposals are the test-time computational bottleneck in state-of-the-art detection systems.
推荐框的计算成为了检测速度的瓶颈
(2)
fast-rcnn的推荐框生成是在CPU上的,因此时间较长,但是直接在GPU上复现fast的方法又没能实现共享计算。
这篇文章移除了一个利用深度卷积网络来生成推荐框的办法,又快又准
rpn网络与检测网络共享卷积层,从而使计算proposal的边际代价较小
(3)