目录
这是我在学习智能优化与控制技术这门课之后整理的知识点,分享给大家,希望对大家有帮助~
第一章 智能控制概述
1、智能控制产生的原因
(1)控制系统的复杂性
a.被控对象的复杂性,主要表现为模型的不确定性,高度非线性,动态突变性,多时间标度,复杂的信息模式以及庞大的数据量
b.环境的复杂性,主要是以其变化的不确定性和难以辨识为特征的,传统控制忽略环境的影响,西安在的大规模复杂控制与决策问题,必须把外界环境和被控对象,以及控制器作为一个整体进行分析和设计。
c.对于控制任务复杂性,以往采用数学语言描述,这种描述是不精确的,实际上控制任务有多重性和时变性。一个复杂任务的确定,需要多次反复。
(2)传统控制理论与方法解决的难度
a.缺乏合适的系统描述方法
b.缺乏有效的处理不确定性的理论和方法
c.缺乏有针对性的系统信息获取与处理方法
(3)与人的经验知识结合的必要性
对于某些复杂的系统,凭人的知觉和经验能够很好的操作,并达到理想的控制效果。
2、两元交集结构:人工智能+自动控制
三元交集结构:人工智能+自动控制+运筹学
3、智能控制发展的三个阶段
a.萌芽期:扎徳,门德尔
b.形成期:傅京孙,玛丹尼
人作为控制器的控制系统
人机结合作为控制器的控制系统
无人参与的自主控制系统
c.发展期:鲁梅哈特,麦克莱朗德
4、智能控制系统的典型结构
(一)组成特点
(1)广义对象:包括通常意义下的被控对象和外部环境
(2)传感器:用来检测被控对象的输出信息
(3)感知信息处理:将传感器得到的原始信息加以处理
(4)认知:主要用来接收和贮存信息、知识、经验和数据
(5)通信接口:建立人机之间的联系,系统中各模块之间的联系
(6)规划和控制(着重):规划和控制是整个系统的核心,他根据给定的任务要求、反馈的信息以及经验知识进行自动搜索、推理决策、动作规划,最终产生具体的控制作用。
(7)执行器:控制器的执行部件
(二)框图:P9
对控制而言,自上而下控制的精度越来越高
对识别而言,自下而上信息的反馈越来越粗糙
相应的智能程度也越来越高
5、智能控制系统的分级递阶结构
(一)组成特点
(1)执行级:一般需要被控对象的准确模型,以实现一定精度要求的控制任务
(2)协调级:协调执行级的动作,不需要精确的模型,但是需要具备学习功能,能接收上一级的模糊指令和符号语言
(3)组织级:将操作员的自然语言翻译成机器语言,进行组织决策和任务规划。
(二)框图:P11
6、智能控制的特点
(一)结构特点
(1)被控对象描述的混合性:由于被控对象通常存在复杂性、非线性、时变性、不确定性以及不完全性,所考虑被控对象无法建立精确模型,智能控制系统一般采用以知识表示的非数学广义模型和以数学模型表示的混合模型来表示被控对象。
(2)信息处理的层次性:智能控制系统具有分层的信息处理与决策机构(分级递阶结构)
(3)控制器结构的组合性:常采用开环控制或定性与定量控制相结合的多模态控制方式
(二)功能特点
(1)学习能力:一个系统,能对一个过程或其环境中未知特征所固有的信息进行学习,并将得到的经验用于估计、分类、决策或控制,使系统性能得以改善,称该系统具有学习功能
(2)适用能力:智能控制器是一种输入到输出的映射关系,可以看成是不依赖于模型的自适应估计,具有很好的适应性能,当系统的输入不是学习过的例子时,可以给出合适的输出。
(3)组织能力:对于复杂任务和分散传感信息具有自行组织和协调功能,智能控制器可以在任务要求的范围内自行决策,主动采取行动。当出现多个目标冲突时,各控制器在一定限制条件下自行解决。
(三)学科特点
7、智能控制分类(列举至少三种)
(1)基于模糊推理的智能控制
(2)基于神经网络的智能控制
(3)学习控制
(4)基于规则的仿人智能控制
(5)复合智能控制
第二章 模糊数学基础
1、模糊集合和经典集合的区别
经典集合的内涵和外延都是明确的,模糊集合没有明确外延的概念,模糊集合的 值域为0-1,当 的值域为{0,1}时,隶属度函数退化为经典集合的特征函数。模糊集合可看成隶属度只取0和1的经典集合的推广。
2、模糊集合有几种表示方法
(一)论域是有限集
(二)论域是连续时
3、模糊集合的运算
4、常用的隶属函数并任意写出其中一种表达式
三角形隶属函数、梯形隶属函数、高斯型隶属函数、广义钟形隶属函数、S型隶属函数
其中高斯型隶属函数表达式为
5、模糊关系与模糊矩阵是重点
(1)模糊关系表示方法:关系表格表示法、扎德法、序偶法、向量法,连续时公式
(2)论域是有限域时,模糊关系与模糊矩阵一一对应,两者的运算也是一一对应,交、并运算前提是两模糊矩阵同维
(3)模糊矩阵合成: 合成的前提是第一个矩阵的列数与第二个矩阵的行数相等。Q的第i行第k列元素等于R的第i行元素与S的第k列元素两两先取较小者,然后在所得结果中取较大者。
(4)离散论域情况下,隶属度函数可以表示成模糊向量的形式, 即可以通过模糊向量表示模糊集合;
离散论域下,模糊集合的直积与模糊向量的直积相同;
将模糊集合表示成模糊向量,然后利用模糊向量的直积运算获得模糊集合的直积;
模糊向量的直积即为模糊矩阵的合成算子。
(5)模糊关系的合成:模糊关系的合成与模糊矩阵的合成之间是一一对应关系。模糊关系合成运算法则与模糊矩阵完全相同。
6、模糊逻辑
(1)模糊命题的真值就是隶属度函数的取值V(P)
(2)
(3)语言值:与数值直接联系的形容词,如大、小、多、少;语言值可以用模糊数(隶属度)表示
(4)语言变量四要素:
(5)给一个规则要能正确的判断出哪些是语言变量(变量名称)哪些是语言值
7、模糊推理【见书和 PPT,尤其是关系R的求解】
(一)近似推理
(二)模糊条件推理
(三)多输入模糊推理(p58页,R的特殊求解)
第三章 模糊控制
1、模糊控制的特点
(1)无需知道被控对象的数学模型,以控制经验为依据
(2)是一种反映人类智慧思维的智能控制:规则的制定通常来自于人对被控对象的控制经验。
(3)易被人们所接受:控制规则是以人类语言表示的
(4)构造容易:利用单片机等构造模糊控制器,算法用软件实现
(5)鲁棒性好
2、模糊控制的定义
模糊控制系统是一种自动控制系统,以模糊数学、模糊语言形式的知识表示和模糊推理为理论基础;采用计算机控制技术构成的具有闭环结构的数字控制系统;组成核心是具有智能性的模糊控制器。
3、模糊控制系统的组成
(1)FLC:模糊控制器,实现模糊控制算法
(2)输入/输出接口装置:将被控对象输出的模拟量转化为数字量,将模糊控制器输出的数字量转化为模拟量
(3)广义对象:包括被控对象及执行机构
(4)传感器:将被控对象的输出转换为电信号(模拟或数字)
4、模糊控制器的基本结构(一般考的是这个并要说出里面任意一部分的功能)
(1)模糊化接口:将系统的设定输入与被控对象输出的偏差,以及偏差的变化量等信号作为系统的输入语言变量,根据在两个输入论域上定义的模糊语言值,将采用标量形式表示的偏差、以及偏差的变化量转化为相应语言值的隶属度向量。
(2)知识库:用于存放模糊推理需要的知识,包括数据库和规则库
数据库:提供必要的定义,包括:量化等级个数与取值、量化方式;比例因子取值;隶属函数的类型与参数取值
规则库:表示模糊规则和多个规则之间的模糊关系
(3)推理机:是模糊控制的核心,利用知识库,模拟人的推理过程,给出合适的模糊输出,实质是模糊推理
(4)模糊判决接口:取一个能最佳代表推理结果的精确值的过程,就是精确
化过程,或称去(逆、非)模糊化过程,由模糊判决接口完成
5、模糊控制算法步骤
步骤1 :通过被控对象输出值与系统给定值比较,得到偏差信号的精确量
步骤2 :将偏差信号的精确量转化为模糊量
步骤3 :根据偏差信号的模糊量和模糊规则,通过模糊推理得到控制信号的模糊量
步骤4 :将控制信号模糊量转化为精确量
6、模糊控制器的设计内容
(1)确定模糊控制器的输入变量和输出变量
(2)设计模糊控制器的控制规则
(3)确立模糊化和非模糊化的方法
(4)选择模糊控制器的输入变量及输出变量的论域,量化因子、比例因子
7、模糊控制器的维数:模糊控制器输入变量的个数
8、模糊控制规则
(1)选择输入输出变量的语言值
(2)定义语言值得隶属函数
(3)建立模糊控制规则
9、模糊化方法
(1)精确值对应的隶属度最大的语言值只有一个,如果只存在一个语言值,使得该精确值对应的隶属度最大,就将该语言值作为精确值的模糊化结果
(2)精确值对应的隶属度最大的语言值不止一个,该精确值的隶属度为1 ,论域上其他元素的隶属度均为0
10、去模糊化方法
(1)最大隶属度法
(2)重心法
11、量化因子
12、比例因子
13、简述查表法思想
通过离线计算获得一模糊控制表,将表放在计算机内存中。FLC工作时,计算机仅根据e和de的采样值(量化值)在表中找出当前时刻的控制输出量化值。此量化值再乘以比例因子则得到控制输出精确值。
14、模糊控制查询表的设计和结构图
(1)确定输入、输出变量(针对 FLC 而言)
(2)确定输入、输出变量的论域、量化因子、比例因子
(3)定义输入和输出变量的语言值
(4)制定模糊控制规则
(5)生成模糊控制表(包括模糊化方法和去模糊方法的确定、模糊推理等)
15、模糊控制查询表计算(离散)
16、模糊控制器计算(连续)
17、模糊控制与PID控制的结合两大类方式
(一)模糊控制器和PID 控制器的混合结构
(1)多模控制
(2)PID控制的模糊分解
a.模糊控制与前馈控制的并联
b.模糊控制与积分控制的并联
c.模糊控制与含有模糊积分增益的积分控制并联
d.模糊 PD 控制与模糊 PI 控制并联
e.模糊 PI
(二)常规PID 控制器参数的模糊自整定技术
18、PID控制参数的模糊整定方法原理及框图
该模糊系统有两个输入三个输出
第四章 人工神经网络基础
1、人工神经网络发展简史(没强调过,未必重要,读下即可)
(1)初创期(2)过渡期(3)发展期
2、人工神经网络的特性(只背前面即可,后面扫一眼)
(1)并行处理:单个神经元独立处理接受到的信息,但各个神经元之间并行协同的工作。
(2)非线性映射:任意精度逼近任意非线性函数,适用于非线性辨识与控制。
(3)分布式信息存储:所有定量或者定性信息都分布存储于各个神经元上,并通过大量神经元之间的连接方式和连接权值 来表征特定的信息。
(4)学习和适应:通过学习不断修正各神经元之间连接权值,适应环境变化。
3、神经元特征(没强调过,未必重要,读下即可)
(1)时空整合(2)阈值特性(3)不应期(4)疲劳(5)突触的可塑性
4、单个神经元如何计算输入输出
5、激活函数有哪几种,每一种表达式是什么?
6、神经网络根据连接方式和信息流向分类(四个名字一定要记住)
(1)前向网络:神经元分层排列,组成输入层、隐含层和输出层;每一层的神经元只接收前一层神经元的输入;各神经元之间不存在反馈,信号在各层中顺序传播。
(2)反馈网络:仅在输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈。
(3)相互结合型网络:网状结构,任两个神经元之间都有可能存在连接(反馈)
(4)混合型网络:层次结构网络和网状结构网络的结合;同层内神经元相互连接,可以实现同一层内神经元之间的横向抑制或兴奋机制。
7、学习的实质是什么?
针对一组给定输入 通过学习使网络动态改变权值,从而使其产生相应的期望输出的过程 。
8、有导师学习和无导师学习的区别是什么?
(1)有导师学习:在训练过程中,存在一个期望的网络输出。它是基于误差来调整网络权值的。
(2)无导师学习:网络不存在一个期望的输出,通过建立一个间接评价函数,对网络的某种行为趋向作出评价,改变神经网络数值。
第五章 典型人工神经网络
1、单神经元感知器功能
(1)实现模式识别:凡是具有线性边界的两类模式的识别问题均可以用单神经元感知器解决。
(2)实现逻辑函数:要知道如何实现与或非,自己要会计算。(不能实现异或)
2、多层感知器的网络结构特点是什么?
(1)在输入层和输出层之间嵌入一层或多层隐含层。
(2)通常层与层之间是全连接的,即第l层的任意一个节点与第l+1层的任意一个节点均前馈连接。
(3)输入层有n个输入,但是没有函数处理功能
3、BP算法的思想(要考)
学习过程由信号的正向传输和偏差的反向传播组成。在正向传输过程中,输入样本由输入层,经各隐含层作用后,传向输出层。若输出层输出与期望输出的偏差较大,则进行偏差的反向传播过程。该过程是将输出偏差以某种方式,通过输出
层、隐含层传播至输入层,并将偏差分摊给各层的神经元上,以获得各层单元的偏差信号,并根据该信号调整神经单元间的连接权。
4、多层感知器模型的功能
(1)实现任意的布尔函数;
(2)在模式识别问题中,它能划分输入空间,生成复杂的边界;
(3)最后,它能逼近从Rn到Rm的任意连续映射
5、BP算法的影响因素及改进措施(缺陷及改进)
(1)初值权值:随机选较小的值,尽量均匀覆盖权值空间,避免出现初始权值相同的情况。
(2)激活函数:由于常规的Sigmoid函数容易产生饱和现象,可通过调节Sigmoid函数的斜率或采用其它激励函数来改善网络的学习性能。
(3)学习率:学习率越大,收敛越快,但是,容易产生振荡;学习率越小,收敛越慢。可采用自适应变学习率方法和增加一个惯性项的方法。
(4)学习方式:
增量型学习:基于某一个样本的输出偏差更新网络权值。
优点:学习过程是真正的梯度法,而且不必记忆每个权值的变化量;
缺点:是权值的更新只满足逼近最近的那个样本;
累积型学习:基于所有样本的输出偏差更新网络权值。只要学习率充分小,它能使网络收敛。
对随机的输入样本,采用增量式学习算法可以获得较好的学习效果。
(5)与优化算法的结合:神经网络学习本质是搜索合适的权值,利用各种智能优化方法确定神经网络的权值,有的甚至同时实现对其权值和结构的优化。
6、BP算法的局限性
(1)由于采用非线性梯度优化算法,往往得到的是问题的局部极小解;
(2)迭代次数多使得学习效率降低;
(3)在学习新样本时,有遗忘旧样本的趋势,且要求表征每个样本的特征数目要相同。
7、径向基函数RBF神经网络数学表达式(背下来)
8、径向基函数RBF网络结构特点
(1) 2层结构一个隐层,一个输出层
(2) 隐层单元激励函数为高斯函数,叫做基函数或核函数;输出层激励函数为线性函数,输出实际上是高斯函数的线性组合
(3) 由于高斯函数的局限性,每个基函数只对模式空间中某个局部小范围内的输入产生明显的响应
9、径向基函数RBF网络特点(没有结构特点重要)
(1)函数逼近:已有理论证明,只要隐含层节点数量足够多,前馈网可以逼近任意单值连续函数;BP网络:由于采用了Sigmoid函数作为激活函数,对输入信号无限大的范围内均会产生非零值,激活函数可全局接收输入信息;RBF网络:隐含层神经元采用高斯基函数作为激活函数,只有距离基函数中心比较近的输入会明显影响到网络的输出,因此,激活函数具有较强的局部映射能力。
(2)网络结构:BP网络可以由任意层神经元组成;RBF网络只有两层结构,即仅包含一个隐层和一个输出层。
(3)学习:RBF网络比BP网络训练速度快,比较适合于对系统的实时辨识和在线控制。
(4) 网络设计:如何选择合适的径向基函数也是RBF网络设计的难点
10、RBF学习算法有哪几个阶段
(1)根据所有输入样本信息,利用聚类方法,进行隐含层节点径向基函数中心和宽度的学习,这属于无导师学习
(2)根据给定的训练样本,利用有导师学习算法,调整隐含层节点和输出层节点之间的连接权值
11、RBF可以实现什么功能
(1)模式识别
(2)函数拟合
(解决这类识别问题,RBF网比感知器有效得多;函数拟合问题,感知器用的隐节点少,比RBF网的效率高)【括号内的看一下即可,老师没说记】
12、Hopefield网络串行、并行工作方式要会算(串行考的相对多一点)
13、联想记忆怎么算,给你一个样本,如何记住它,如何设计权值,如何辨别是不是记住了,P150例5.3.4(注意0/1和-1/1的区别)
14、DHNN网络联想记忆的基本条件(老师没说,看下即可)
(1)能够收敛于稳定状态,利用此稳态来记忆样本信息;
(2)具有回忆能力,由某一残缺信息回忆起比较完整的记忆
第六章 神经网络控制
1、神经网络控制的基本思想
由于采用神经网络控制的被控对象一般是复杂的且多具有不确定性,因此非线性函数f(.)是难以建立的,可以利用神经网络具有逼近非线性函数的能力模拟f(.)。尽管f(.)的形式未知,但通过系统的实际输出与期望输出之间的偏差,调整神经网络的连接权值,既让神经网络学习,直至偏差为0的过程,就是神经网络模拟f(.)逆的过程,实际上是对被控对象的一种求逆过程。
2、神经网络在控制中的作用
(1)在反馈控制系统中直接充当控制器控制器。
(2)基于精确模型的各种控制结构中充当被控对象的模型。
(3)在传统控制器中优化计算作用优化作用。
(4)在与其它智能控制方法和优化算法相融合中,为其提供非参数化对象模型、优化参数、推理模型及故障诊断等
3、辨识的基本要素是什么
(1)输入/输出数据--能够量测到的系统的输入/输出
(2)模型类--所考虑的系统的结构
(3)等价准则--辨识的优化目标
4、辨识结构框图
5、神经网络辨识的思想
本质是选择一个合适的神经网络来逼近实际系统模型。神经网络的输入输出关系本质上是一种非线性映射,它可以从某一输入空间通过网络变换映射到输出空间。即利用输入输出数据来训练神经网络,使网络的输出与待辨识系统的输出接近。
6、神经网络辨识特点(老师没说,读下即可,褚菲说了解)
(1)不要求建立实际系统的辨识格式。
(2)可以对本质非线性系统进行辨识。
(3)辨识的收敛速度不依赖于待辨识系统的维数
(4)可用于在线控制
7、前向建模的思想是什么?
所谓前向建模,是指利用神经网络来逼近非线性系统的前向动力学模型。神经网络模型在结构上与实际系统并行,训练网络的导师信号直接利用系统的实际输出,即将系统的实际输出与网络输出的偏差作为网络的训练信号。
8、前向建模法怎么做的;给一个方程如何进行辨识,给出辨识结构图,输入输出怎么算(隐含层可以不给)P158例6.2.1【设计题】
9、逆模型法结构框图
10、单神经元PID自适应控制思想及框图
就是在控制系统中,利用一个神经元作为控制器,实现类似于PID控制器的功能,但其参数可以不断调整,从而实现自适应控制功能。
11、神经网络直接逆模型控制思想、结构图
假设被控系统可逆,通过离线建模过程,得到系统的逆模型网络,然后再将这一逆模型去与被控对象串联起来,用这一逆网络模型去直接控制被控对象。
【框图注意下标和阶次,逆模型输出是控制量】
12、给定一个输入系统后,自己能建立直接逆模型控制器【设计题】
第七章 智能优化及其应用
1、优化或搜索方法分类
(1)从搜索范围来看:局部优化算法、全局优化算法
(2)从搜索特性来看:确定性优化方法、随机优化方法
(3)从搜索信息来看:基于海塞矩阵/梯度的方法、直接优化方法
2、遗传算法的基本组成
(1)问题潜在解的遗传表示
(2)产生初始种群的方法
(3)对潜在解排序的评价函数
(4)改变子代种群组成的遗传算子 (选择、交叉、变异等
(5)算法的控制参数 (种群规模、交叉和变异概率等)