《控制系统实验与综合设计》自控第一次(含程序和题目)

实验一  零极点对系统性能的影响

一、实验完成任务

1、理解并分析传递函数零、极点的动态性质

2、进行理论值计算

3、利用MATLAB编写程序,得出实验结果

4、将计算所得的理论值与实验结果对比并分析

二、实验内容

(1)分析有零点系统的阶跃响应。

设某位置随动系统的结构图如图2-1所示。

图2-1

要求:①做出该系统的单位阶跃响应曲线及求解其动态性能指标;

          ②添加开环零点(如图2-2所示),使系统的等效阻尼比提高到原来的两倍,做出该系统的单位阶跃响应及求解其动态性能指标;

图2-2

         ③在原系统的基础上直接添加与②相同的闭环零点(如图2-3所示),做出该系统的单位阶跃响应及求解其动态性能指标。

2-3

2)分析高阶系统的阶跃响应

        闭环传递函数  G(s)=\frac{500}{(s+40)(s^{2}+10s+50)}

        ①  做出单位阶跃响应曲线,并求出其动态响应指标(超调量、过渡过程时间);

        ②  简化系统为二阶系统,观察响应曲线并求出其动态响应指标;

        ③  将原系统和②做出的两个响应曲线画在一张图形内,并比较性能指标。

三、原理和理论分析

1、原理

(1)动态性能求解原理

a.延迟时间:响应曲线第一次达到稳态值的一半所需的时间。

b.上升时间响应曲线从稳态值的10%上升到90%,所需的时间。

c.峰值时间:响应曲线超过终值到达第一个峰值所需要的时间。

e.调节时间:响应曲线达到并永远保持在一个允许误差范围内,所需的最短时间。用稳态值的百分数(5% 或2%)

d.超调量:指响应的最大偏离量c(tp)于终值之差的百分比

(2)动态性能求解公式

(3)高阶系统的阶跃响应分析

a.工程上,高阶系统是普遍存在的,有些系统很难采用一阶、二阶系统去近似,可采用闭环主导极点进行高阶近似分析,获取(近似)动态性能指标

b.闭环主导极点:离虚轴最近,而且附近无其他零点、极点,对稳定系统动态性能的影响最大,起着主要作用。其他所有极点与虚轴的距离都是该极点与虚轴的距离的五倍以上

2、第一题理论分析

3、第二题理论分析

四、实验完成过程

(一)第一题

1、第一问

(1)程序

num=4;
den=[1,1,4];
t=0:0.01:20;
step(num,den,t)
[y,x,t]=step(num,den,t);
maxy=max(y);
yss=y(length(t));
pos=100*(maxy-yss)/yss
for i=1:2001
    if y(i)==maxy
        n=i;end
end
tp=(n-1)*0.01
y1=1.05*yss;
y2=0.95*yss;
i=2001;
while i>0
    i=i-1;
    if y(i)>=y1|y(i)<=y2;m=i;
        break
    end
end
ts=(m-1)*0.01
title('单位阶跃响应')

(2)运行结果

pos =
   44.4388
tp =
    1.6200
ts =
    5.3900

(3)图

2、第二问

(1)程序

num=[0,1,4];
den=[1,2,4];
t=0:0.01:20;
step(num,den,t)
[y,x,t]=step(num,den,t);
maxy=max(y);
yss=y(length(t));
pos=100*(maxy-yss)/yss
for i=1:2001
    if y(i)==maxy
        n=i;end
end
tp=(n-1)*0.01
y1=1.05*yss;
y2=0.95*yss;
i=2001;
while i>0
    i=i-1;
    if y(i)>=y1|y(i)<=y2;m=i;
        break
    end
end
ts=(m-1)*0.01
title('单位阶跃响应')

(2)运行结果

pos =
   19.1026
tp =
    1.5100
ts =
    2.3800

(3)图

3、第三问

(1)程序

num=[0,1,4];
den=[1,1,4];
t=0:0.01:20;
step(num,den,t)
[y,x,t]=step(num,den,t);
maxy=max(y);
yss=y(length(t));
pos=100*(maxy-yss)/yss
for i=1:2001
    if y(i)==maxy
        n=i;end
end
tp=(n-1)*0.01
y1=1.05*yss;
y2=0.95*yss;
i=2001;
while i>0
    i=i-1;
    if y(i)>=y1|y(i)<=y2;m=i;
        break
    end
end
ts=(m-1)*0.01
title('单位阶跃响应')

(2)运行结果

pos =
   50.6295
tp =
    1.3600
ts =
    5.1800

(3)图

(二)第二题

1、第一问

(1)程序

num=500;
den=[1,50,450,2000];
t=0:0.01:20;
step(num,den,t)
[y,x,t]=step(num,den,t);
maxy=max(y);
yss=y(length(t));
pos=100*(maxy-yss)/yss
for i=1:2001
    if y(i)==maxy
        n=i;end
end
tp=(n-1)*0.01
y1=1.05*yss;
y2=0.95*yss;
i=2001;
while i>0
    i=i-1;
    if y(i)>=y1|y(i)<=y2;m=i;
        break
    end
end
ts=(m-1)*0.01
title('单位阶跃响应')

(2)运行结果

pos =
    4.2412
tp =
    0.6600
ts =
    0.4400

(3)图

2、第二问

(1)程序

num=12.5;
den=[1,10,50];
t=0:0.01:20;
step(num,den,t)
[y,x,t]=step(num,den,t);
maxy=max(y);
yss=y(length(t));
pos=100*(maxy-yss)/yss
for i=1:2001
    if y(i)==maxy
        n=i;end
end
tp=(n-1)*0.01
y1=1.05*yss;
y2=0.95*yss;
i=2001;
while i>0
    i=i-1;
    if y(i)>=y1|y(i)<=y2;m=i;
        break
    end
end
ts=(m-1)*0.01
title('单位阶跃响应')

(2)运行结果

pos =
    4.3211
tp =
    0.6300
ts =
    0.4100

(3)图

3、第三问

(1)程序

num=500;
den=[1,50,450,2000];
t=0:0.01:20;
step(num,den,t)
hold on
num=12.5;
den=[1,10,50];
t=0:0.01:20;
step(num,den,t)
legend('原系统','简化为二阶系统')

(2)图

五、实验完成结果

(一)第一题

1、实验结果

2、理论计算

(二)第二题

六、理论与实验结果对比分析

        峰值时间及超调得实验结果和理论计算大致相同,而调节时间理论值大于实验结果,可能是因为近似计算的缘故,ts调节时间是在偏差是+5%时的近似运算,存在误差。

        附加开环零点后,会使根轨迹向复平面左侧弯曲或移动,增大系统阻尼,增加系统的相对稳定性,减小上升时间,减小调节时间,减小超调量。

        附加闭环零点后,超调量增大,但阻尼比不受影响,峰值响应加快,峰值时间减小。

        高阶系统经简化成二阶系统后峰值时间以及调节时间减小,快速性增强,超调增大,稳定性下降。

实验二 控制系统的根轨迹图绘制

一、实验完成任务

(1)根据开环传递函数绘制闭环特征根的根轨迹

(2)利用根轨迹图对控制系统进行分析。

(3)明晰各部分根轨迹增益意义

二、实验内容

(1)控制系统的开环传递函数为:G(s)=\frac{k_{r}}{s(s+1)(s+2)}

要求:① 准确记录根轨迹的起点、终点与根轨迹的条数;

           ② 确定根轨迹的分离点与相应的根轨迹增益;

           ③ 确定系统临界稳定增益,并用命令验证系统的稳定性。

(2)控制系统的开环传递函数为:G_{03}(s)=\frac{k_{r}(s+3)}{s(s+2)}        

要求:① 确定系统具有最大超调量时的根轨迹增益。

           ② 确定系统阶跃响应无超调量时的根轨迹增益取值范围。

三、原理和理论分析

1、原理

(1)根轨迹的定义:开环传递函数的某一个参数从零变化到无穷大时,闭环特征根在s平面上的轨迹称为根轨迹。

(2)开环增益K从零变到无穷,可以用解析方法求出闭环极点的全部数值。

(3)若根轨迹与虚轴有交点则该点K为临界稳定增益。

(4)稳定性判断:考察根轨迹是否进入右半 s 平面,若进入则不稳定反之稳定。

2、第一题理论分析

3、第二题理论分析

四、实验完成过程

(一)第一题

1、程序

(1)绘制根轨迹

num=1;
den=conv(conv([1,0],[1,1]),[1,2]);
rlocus(num,den)
[k1,r1]=rlocfind(num,den)
[k2,r2]=rlocfind(num,den)

验证系统的稳定性

(2)小于临界稳定增益

num=1;
den=conv(conv([1,0],[1,1]),[1,2]);
r=rlocus(num,den,3)

(3)大于临界稳定增益

num=1;
den=conv(conv([1,0],[1,1]),[1,2]);
r=rlocus(num,den,7)

2、运行结果

(1)

Select a point in the graphics window
selected_point =
  -0.4147 + 0.0186i
k1 =
    0.3854
r1 =
  -2.1549 + 0.0000i
  -0.4226 + 0.0170i
  -0.4226 - 0.0170i
Select a point in the graphics window
selected_point =
  -0.0024 + 1.3395i

(2)

r =
  -2.6717 + 0.0000i  -0.1642 + 1.0469i  -0.1642 - 1.0469i

(3)

r =
  -3.0867 + 0.0000i   0.0434 + 1.5053i   0.0434 - 1.5053i

3、根轨迹图

(二)第二题

1、程序

num=[1,3];
den=[1,2,0];
rlocus(num,den)
axis equal

2、图

五、实验完成结果

(一)、实验结果

1、第一题

(1)根轨迹起点为0、-1、-2,终点为无穷大,条数为3条

(2)分离点为(-0.43,0),相应的根轨迹增益为0.3854

(3)系统临界稳定增益为5.3811,当K小于临界稳定增益时系统稳定,反之不稳定。

2、第二题

(1)当系统具有最大超调量时其根轨迹增益为2.06.

(2)系统阶跃响应无超调量时的根轨迹增益取值范围为0-0.5,7.5-无穷大

(二)理论计算

1、第一题

(1)根轨迹起点为0、-1、-2,终点为无穷大,条数为3条

(2)分离点为(-0.423,0),相应的根轨迹增益为0.3854

(3)系统临界稳定增益为6,当K小于临界稳定增益时系统稳定,反之不稳定。

2、第二题

(1)当系统具有最大超调量时其根轨迹增益为1.98.

(2)系统阶跃响应无超调量时的根轨迹增益取值范围为0-0.5,7.62-无穷大

六、理论与实验结果对比分析

        闭环极点在s 平面上的左半面系统稳定,位于s 平面上的右半面系统不稳定,位于虚轴上时临界稳定。根轨迹条数为开环极点和开环零点中其中最大值,起点为开环极点,终点为开环零点。与虚轴交点处的增益即为临界稳定增益,小于临界稳定增益时系统稳定,反之不稳定。第二题利用重根法理论计算所得K值与实验结果基本接近,可认为正确。

实验三 控制系统的奈奎斯特图绘制与分析

一、实验完成任务

1、奈氏图的绘制

2、系统稳定裕量的求解

3、闭环单位阶跃响应曲线的绘制

二、实验内容

(1) G(s)=\frac{1}{s(Ts+1)}

要求:作Nyquist图(T自取)。(改变坐标范围或者设定角频率变量w= w1:w2:w3

(2)已知三阶系统的开环传递函数为:G(s)=\frac{7}{2(s^{3}+2s^{2}+3s+2)},画出系统的奈氏图,求出相应的稳定裕量,并求出闭环单位阶跃响应曲线。

三、原理和理论分析

1、原理

(1)Nyquist提出了一种根据闭环控制系统的开环频率特性,确定闭环控制系统相对稳定性的方法。

(2)奈氏图能在一幅图上直观表示出系统在整个频率范围内的频率响应特性

(3)控制系统正常工作的首要条件是系统稳定,同时还必须满足一定的相对稳定性要求,相对稳定性反映出系统稳定程度的好坏。

(4)对于闭环稳定系统,如果开环相频特性再滞后g 度,则系统将变为临界稳定。

(5)为了使最小相位系统稳定,相角裕度必须为正 。在极坐标图上的临界稳定点为(-1,0j)。

(6)相位裕度为\gamma =180^{o}+\angle G(jw_{c})H(jw_{c}),幅值裕度为K_{g}=\frac{1}{\mid G(jw_{c})H(jw_{c})\mid }

2、第一题理论分析

3、第二题理论分析

四、实验完成过程

(一)第一题

1、程序

num=1;
den=conv([1,0],[1,1]);
nyquist(num,den)
axis([-2 2 -30 30])

2、图

(二)第二题

1、第一问

(1)程序

num=7/2;
den=[1 2 3 2];
figure(1)
nyquist(num,den)

(2)图片

2、第二问

(1)程序

num=7/2;
den=[1 2 3 2];
G=tf(num,den);
w=logspace(0,4,50);
bode(G,w);
grid;
[Gm,Pm,Wcg,Wcp]=margin(G)

(2)运行结果

Gm =
    1.1433
Pm =
    7.1688
Wcg =
    1.7323
Wcp =
    1.6541

(3)图片

3、第三问

(1)程序

num=7/2;
den=[1 2 3 2];
a=num;
b=den;
t=0:0.1:20;
y=step(a,b,t);
plot(t,y);
title('阶跃响应');
xlabel('时间/s');
ylabel('幅值');
grid on

(2)图片

五、实验完成结果

1、第一题奈氏图绘制(手绘仅绘制从零至正无穷)

                                  实验结果                                                         理论计算

2、第二题

(1)奈氏图绘制(手绘仅绘制从零至正无穷)

                               实验结果                                                               理论计算

(2)实验结果:相位裕度为7.17,幅值裕度为1.14

         理论计算:相位裕度为7.57,幅值裕度为1.09

六、理论与实验结果对比分析

(1)理论计算与实验结果几乎完全一致,不存在误差,实验正确。

(2)根据所作的Nyquist图利用奈氏判据可判断系统稳定性。

(3)相位裕度大于0,幅值裕度为大于1,系统稳定。

(4)通过阶跃响应曲线看出输出为衰减震荡,系统稳定。

实验四 应用频率法设计串联校正装置

一、实验完成任务

1、掌握串联校正的分析和设计方法;

2、研究串联校正环节对系统稳定性及过渡过程的影响;

3、使用MATLAB工具箱中的simulink工具设计校正环节。

二、实验内容

三、原理和理论分析

1、原理

(1)如果预先规定了控制系统的性能指标,然后设计一个系统,选择合适的校正装置和参数使系统满足性能要求,这个过程称为控制系统的校正。

(2)串联超前校正:利用校正装置的最大超前角提高相位裕度。

(3)串联滞后校正:利用幅值衰减也行使待校正系统截止频率前移,提高相位裕度。

(4)串联滞后-超前校正:一举两得,兼顾超前和 滞后校正环节优势,既能利用校正装置的最大超前角又能利用幅值衰减特性。

2、第一题理论分析

通过未加校正、加入串联超前校正、加入串联滞后校正三者波德图进行比较,对比分析稳定裕度,分析系统动态性能,判断校正系统是否合适。

3、第二题理论分析

4、第三题理论分析

四、实验完成过程

(一)第一题

1、时域图

2、不同校正波德图

(1)程序

原系统

num=4;
den=[1 1 0];
G=tf(num,den);
w=logspace(0,4,50);
bode(G,w);
grid;
[Gm,Pm,Wcg,Wcp]=margin(G)

超前校正

num=[2.52,4];
den=conv(conv([1,0],[1,1]),[0.26,1]);
G=tf(num,den);
w=logspace(0,4,50);
bode(G,w);
grid;
[Gm,Pm,Wcg,Wcp]=margin(G)

滞后校正

num3=[40,4];
den3=conv(conv([1,0],[1,1]),[83.33,1]);
G3=tf(num3,den3);
w3=logspace(0,4,50);
bode(G3,w3);
grid;
[Gm2,Pm2,Wcg2,Wcp2]=margin(G3)

(2)图

原系统波德图

超前校正波德图

滞后校正波德图

(二)第二题

1、时域图

2、校正前后波德图

(1)代码

校正前

num=10;
den=[1 1 0];
G=tf(num,den);
w=logspace(0,4,50);
bode(G,w);
grid on;
[Gm,Pm,Wcg,Wcp]=margin(G)
校正后
num=[4.56 10];
den=conv(conv([1,0],[1,1]),[0.114,1]);
G=tf(num,den);
w=logspace(0,4,50);
bode(G,w);
grid on;
[Gm,Pm,Wcg,Wcp]=margin(G)

(2)图片

                                      校正前                                                            校正后

合并图

(三)第三题

1、时域图

2、校正前后波德图

(1)代码

校正前

num=30;
den=[0.02 0.3 1 0];
G=tf(num,den);
w=logspace(0,4,50);
bode(G,w);
grid on;
[Gm,Pm,Wcg,Wcp]=margin(G)
校正后
num2=[111 30];
den2=conv(conv(conv([1,0],[0.1,1]),[0.2,1]),[41,1]);
G2=tf(num2,den2);
w2=logspace(0,4,50);
bode(G2,w2);
grid;
[Gm2,Pm2,Wcg2,Wcp2]=margin(G)

(2)图片

                                校正前                                                                校正后

五、实验完成结果

1、第一题

        通过绘制系统不加校正、加入超前校正、滞后校正的对数幅频特性曲线可以观测出超前校正环节效果较好,稳定裕度提高,增加系统的相对稳定性。

2、第二题

        通过理论值计算得出a=3.26,T=0.114,从而得出矫正环节传递函数\frac{1+0.456S}{1+0.114S}

3、第三题

        通过理论值计算得出b=0.09,T=41,从而得出矫正环节传递函数\frac{1+3.7S}{1+41S}

六、理论与实验结果分析

1、对于第一题

  首先通过观察时域内的响应曲线可以观察出,添加超前校正环节的响应曲线特性较好,稳定性相对更高。其次通过绘制三者对数相频频率特性曲线,可以观察出,添加超前校正环节相频频率特性曲线的相位裕度较大,幅值裕度也较大,相对稳定性高。所以由此分析,本装置添加超前校正环节效果做好。

2、对于第二题

通过理论计算后,设计出符合条件的超前校正环节,绘制时域内的响应曲线以及对数相频频率特性曲线可以观察出在校正后,系统截止频率增加,稳定裕度增大,相对稳定性提高,并且符合要求条件。

3、对于第三题

通过理论计算后,设计出符合条件的滞后校正环节,绘制时域内的响应曲线以及对数相频频率特性曲线可以观察出在校正后,系统截止频率小,稳定裕度增大,相对稳定性提高,并且符合要求条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值