泊车算法中的 路径规划和 控制模块

自动驾驶泊车算法中的 路径规划控制模块 是实现车辆精准停入车位的核心环节。以下是这两个模块的详细技术解析:


1. 路径规划模块

路径规划的目标是生成一条从起点到目标车位的 安全、平滑且符合车辆运动学约束的轨迹,同时避开障碍物。

(1) 路径规划的关键技术
a. 几何模型法(Geometric Planning)
  • 原理:基于车辆运动学模型(如阿克曼转向几何)和车位几何参数,生成分段路径(如圆弧+直线组合)。

  • 典型场景:平行泊车、垂直泊车。

  • 平行泊车示例

    • 三段式轨迹

      1. 初始前进段:车辆向前移动至起始位置。

      2. 倒车段:根据最小转弯半径计算倒车圆弧轨迹。

      3. 调整段:通过小幅修正方向完成最终对齐。

    • 数学建模:利用车辆后轴中心轨迹的曲率连续性,结合车位长度和车辆尺寸计算关键点。

  • 优点:计算简单、实时性高。

  • 缺点:对复杂场景(如动态障碍物)适应性差。

b. 优化算法
  • 问题建模:将泊车路径规划转化为带约束的优化问题,目标函数通常为路径最短、转向角变化最小或能耗最低。

  • 常用方法

    • A*算法:在栅格化地图中搜索最短路径,结合启发式函数加速搜索。

    • RRT(快速随机树):通过随机采样生成树状路径,适合高维空间和非完整约束(如车辆不能横向移动)。

    • MPC(模型预测控制):滚动时域优化,每一步预测未来多步轨迹并动态调整,适用于动态环境。

  • 优化目标示例

    math
    复制
    \min \int_{0}^{T} (w_1 \cdot \text{路径长度} + w_2 \cdot \text{转向角变化率}) \, dt
    \quad \text{满足车辆运动学约束和避障条件}
c. 基于采样的方法
  • Hybrid A*:结合离散栅格和连续状态空间,生成更平滑的轨迹。

  • Lattice Planner:在 Frenet 坐标系(沿道路方向分解)下生成候选路径簇,选择最优路径。

d. 深度学习路径规划
  • 端到端网络:输入感知数据(如鸟瞰图),直接输出路径点序列(如使用CNN+RNN结构)。

  • 模仿学习:通过人类驾驶数据训练模型,复现泊车行为。

(2) 路径规划的挑战与解决方案
  • 狭窄空间:车辆运动学约束导致解空间有限
    → 引入 Reeds-Shepp曲线Dubins路径(理论最小转弯半径路径)。

  • 动态障碍物:行人或其他车辆突然进入泊车路径
    → 实时重规划(如MPC滚动优化)或安全走廊(Safe Corridor)约束。

  • 多目标优化:路径平滑性 vs. 计算效率
    → 分层规划(全局粗规划 + 局部精细优化)。


2. 控制模块

控制模块的任务是 精准跟踪规划路径,通过调节方向盘转角和车速,使车辆实际运动与规划轨迹一致。

(1) 横向控制(Lateral Control)

负责控制方向盘转角,确保车辆沿路径行驶。

a. PID控制
  • 原理:根据横向偏差(车辆当前位置与参考路径的垂直距离)和航向角偏差,计算方向盘转角。

  • 缺点:对非线性、时变系统(如低速大转向角场景)鲁棒性差。

b. 纯追踪算法(Pure Pursuit)
  • 原理:在参考路径上选择一个“预瞄点”,计算车辆到达该点所需的曲率,转化为方向盘转角。

  • 关键参数:预瞄距离(距离越远,转向越平缓;越近则响应更快但易振荡)。

c. LQR(线性二次调节器)
  • 原理:基于车辆线性化模型,设计状态反馈控制器,最小化横向偏差和控制量(转向角变化率)。

  • 公式

    math
    复制
    u = -K \cdot x

    其中,x 为状态向量(横向偏差、航向角偏差等),K 为通过Riccati方程求解的增益矩阵。

d. MPC(模型预测控制)
  • 原理:在每个控制周期内,求解未来有限时域内的最优控制序列,仅执行第一步并滚动优化。

  • 优势:显式处理车辆动力学约束(如转向角速率限制)和障碍物避让。

(2) 纵向控制(Longitudinal Control)

负责控制车速,实现平滑启停和轨迹跟踪。

a. Bang-Bang控制
  • 原理:全油门加速至目标速度,然后全力制动停车。

  • 适用场景:对舒适性要求低的简单场景。

b. PID速度控制
  • 原理:根据速度误差调节油门/刹车,实现恒定车速或跟踪速度曲线。

c. 基于模型的控制
  • 车辆逆动力学模型:根据期望加速度计算驱动力矩,考虑坡度、空气阻力等因素。

(3) 横纵向协同控制
  • 耦合控制:横向和纵向控制需协同,例如在狭窄路径中降低车速以提高转向精度。

  • 分层架构:上层输出路径和速度曲线,下层执行转向和油门/刹车控制。

(4) 避障与安全策略
  • 势场法(Potential Field):将障碍物视为斥力,目标点视为引力,生成合力方向控制车辆。

  • 安全距离模型:实时计算与障碍物的TTC(碰撞时间),触发紧急制动(如ISO 21448预期功能安全标准)。


3. 典型应用案例

(1) 特斯拉Autopark
  • 路径规划:基于视觉感知的车位检测,使用改进A*算法生成轨迹。

  • 控制模块:MPC横向控制 + PID纵向控制,支持平行/垂直车位。

(2) 博世自动泊车系统
  • 路径规划:几何模型 + 优化算法,支持狭窄车位(仅比车长多0.8米)。

  • 控制模块:LQR横向控制器,超声波雷达实时监控障碍物。


4. 技术挑战与前沿方向

  • 复杂场景:低光照、雨水干扰的车位检测 → 多模态融合(激光雷达+视觉)。

  • 计算实时性:车载芯片算力有限 → 使用轻量化模型(如TensorRT加速)。

  • V2X协同:通过车联网获取停车场全局地图,减少车端感知负担。

  • 端到端控制:直接通过强化学习训练“感知-控制”策略(如Waymo的Parallel Autonomy)。


总结

路径规划模块需要平衡 最优性实时性,而控制模块需在 精度鲁棒性 之间取舍。两者协同工作,结合高精度感知和车辆动力学模型,才能实现安全、舒适的自动泊车。未来趋势是进一步融合AI算法与车路协同技术,实现全场景、无地图的自主泊车能力。

### 自动泊车路径规划算法详解 #### 路径规划的重要性 自动泊车系统的核心在于如何安全有效地引导车辆进入指定的停车位。这不仅涉及到感知周围环境的能力,更依赖于高效的路径规划算法来决定最优行车路线[^2]。 #### 基本概念技术框架 路径规划通常基于车辆当前位置及其目的地之间的相对距离角度差来进行设计。为了确保安全性并避开可能存在的障碍物,在创建具体行驶方案前需先通过传感器获取周边状况的信息,并据此建立局部地图用于后续处理过程中的参照依据[^5]。 #### 主要组成部分 - **初始条件设定**:定义起始点(即汽车当前所在位置)、终点(期望达到的目标位姿),以及两者间的最大允许偏差范围。 - **中间节点选取**:考虑到实际道路情况复杂多变,往往还需要设置若干过渡性的参考坐标作为连接起点至终点间平滑曲线上的关键支撑点[^1]。 - **避障策略实施**:当检测到潜在冲突区域时,则应调整原定计划以绕过这些危险地带;此过程中可能会引入额外的时间成本或空间开销,因此需要权衡利弊作出合理抉择[^4]。 - **最终轨迹生成**:综合考虑上述因素后运用特定数学模型完成整个移动序列的设计——比如采用样条插值构造连续可导的函数表达式描述理想状态下各时刻对应的位置变化规律[^3]。 ```python def generate_path(start_pose, end_pose, obstacles): """ Generate a feasible path from start pose to end pose avoiding given obstacles. Args: start_pose (tuple): Initial position and orientation of the vehicle. end_pose (tuple): Target parking spot's center point with desired heading angle. obstacles (list[tuple]): List of obstacle positions. Returns: list[list[float]]: Sequence of waypoints forming the planned route. """ # Simplified example implementation import numpy as np def cubic_spline(x0, y0, theta0, xf, yf, thetaf): """Compute coefficients for cubic spline interpolation.""" A = [[1, x0, pow(x0, 2), pow(x0, 3)], [0, 1, 2*x0, 3*pow(x0, 2)], [1, xf, pow(xf, 2), pow(xf, 3)], [0, 1, 2*xf, 3*pow(xf, 2)]] b = [y0, math.tan(theta0), yf, math.tan(thetaf)] c = np.linalg.solve(A,b) return lambda t : sum([c[i]*pow(t,i) for i in range(len(c))]) # Placeholder logic for actual algorithm steps... intermediate_points = [] # Add code here based on real-world constraints like minimum turning radius etc. # Also consider adding avoidance maneuvers around 'obstacles'. final_trajectory = [] prev_point = None for curr_point in [start_pose]+intermediate_points+[end_pose]: if not prev_point is None: segment_func = cubic_spline(*prev_point,*curr_point) num_samples = int(np.sqrt((curr_point[0]-prev_point[0])**2+(curr_point[1]-prev_point[1])**2)/resolution)+1 samples = [(segment_func(i/num_samples*(curr_point[0]-prev_point[0])+prev_point[0]), segment_func(i/num_samples*(curr_point[1]-prev_point[1])+prev_point[1])) for i in range(num_samples)] final_trajectory.extend(samples[:-1]) prev_point = curr_point return final_trajectory ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值