自动驾驶泊车算法中的 路径规划 和 控制模块 是实现车辆精准停入车位的核心环节。以下是这两个模块的详细技术解析:
1. 路径规划模块
路径规划的目标是生成一条从起点到目标车位的 安全、平滑且符合车辆运动学约束的轨迹,同时避开障碍物。
(1) 路径规划的关键技术
a. 几何模型法(Geometric Planning)
原理:基于车辆运动学模型(如阿克曼转向几何)和车位几何参数,生成分段路径(如圆弧+直线组合)。
典型场景:平行泊车、垂直泊车。
平行泊车示例:
三段式轨迹:
初始前进段:车辆向前移动至起始位置。
倒车段:根据最小转弯半径计算倒车圆弧轨迹。
调整段:通过小幅修正方向完成最终对齐。
数学建模:利用车辆后轴中心轨迹的曲率连续性,结合车位长度和车辆尺寸计算关键点。
优点:计算简单、实时性高。
缺点:对复杂场景(如动态障碍物)适应性差。
b. 优化算法
问题建模:将泊车路径规划转化为带约束的优化问题,目标函数通常为路径最短、转向角变化最小或能耗最低。
常用方法:
A*算法:在栅格化地图中搜索最短路径,结合启发式函数加速搜索。
RRT(快速随机树):通过随机采样生成树状路径,适合高维空间和非完整约束(如车辆不能横向移动)。
MPC(模型预测控制):滚动时域优化,每一步预测未来多步轨迹并动态调整,适用于动态环境。
优化目标示例:
\min \int_{0}^{T} (w_1 \cdot \text{路径长度} + w_2 \cdot \text{转向角变化率}) \, dt \quad \text{满足车辆运动学约束和避障条件}
c. 基于采样的方法
Hybrid A*:结合离散栅格和连续状态空间,生成更平滑的轨迹。
Lattice Planner:在 Frenet 坐标系(沿道路方向分解)下生成候选路径簇,选择最优路径。
d. 深度学习路径规划
端到端网络:输入感知数据(如鸟瞰图),直接输出路径点序列(如使用CNN+RNN结构)。
模仿学习:通过人类驾驶数据训练模型,复现泊车行为。
(2) 路径规划的挑战与解决方案
狭窄空间:车辆运动学约束导致解空间有限
→ 引入 Reeds-Shepp曲线 或 Dubins路径(理论最小转弯半径路径)。动态障碍物:行人或其他车辆突然进入泊车路径
→ 实时重规划(如MPC滚动优化)或安全走廊(Safe Corridor)约束。多目标优化:路径平滑性 vs. 计算效率
→ 分层规划(全局粗规划 + 局部精细优化)。
2. 控制模块
控制模块的任务是 精准跟踪规划路径,通过调节方向盘转角和车速,使车辆实际运动与规划轨迹一致。
(1) 横向控制(Lateral Control)
负责控制方向盘转角,确保车辆沿路径行驶。
a. PID控制
原理:根据横向偏差(车辆当前位置与参考路径的垂直距离)和航向角偏差,计算方向盘转角。
缺点:对非线性、时变系统(如低速大转向角场景)鲁棒性差。
b. 纯追踪算法(Pure Pursuit)
原理:在参考路径上选择一个“预瞄点”,计算车辆到达该点所需的曲率,转化为方向盘转角。
关键参数:预瞄距离(距离越远,转向越平缓;越近则响应更快但易振荡)。
c. LQR(线性二次调节器)
原理:基于车辆线性化模型,设计状态反馈控制器,最小化横向偏差和控制量(转向角变化率)。
公式:
u = -K \cdot x
其中,
x
为状态向量(横向偏差、航向角偏差等),K
为通过Riccati方程求解的增益矩阵。
d. MPC(模型预测控制)
原理:在每个控制周期内,求解未来有限时域内的最优控制序列,仅执行第一步并滚动优化。
优势:显式处理车辆动力学约束(如转向角速率限制)和障碍物避让。
(2) 纵向控制(Longitudinal Control)
负责控制车速,实现平滑启停和轨迹跟踪。
a. Bang-Bang控制
原理:全油门加速至目标速度,然后全力制动停车。
适用场景:对舒适性要求低的简单场景。
b. PID速度控制
原理:根据速度误差调节油门/刹车,实现恒定车速或跟踪速度曲线。
c. 基于模型的控制
车辆逆动力学模型:根据期望加速度计算驱动力矩,考虑坡度、空气阻力等因素。
(3) 横纵向协同控制
耦合控制:横向和纵向控制需协同,例如在狭窄路径中降低车速以提高转向精度。
分层架构:上层输出路径和速度曲线,下层执行转向和油门/刹车控制。
(4) 避障与安全策略
势场法(Potential Field):将障碍物视为斥力,目标点视为引力,生成合力方向控制车辆。
安全距离模型:实时计算与障碍物的TTC(碰撞时间),触发紧急制动(如ISO 21448预期功能安全标准)。
3. 典型应用案例
(1) 特斯拉Autopark
路径规划:基于视觉感知的车位检测,使用改进A*算法生成轨迹。
控制模块:MPC横向控制 + PID纵向控制,支持平行/垂直车位。
(2) 博世自动泊车系统
路径规划:几何模型 + 优化算法,支持狭窄车位(仅比车长多0.8米)。
控制模块:LQR横向控制器,超声波雷达实时监控障碍物。
4. 技术挑战与前沿方向
复杂场景:低光照、雨水干扰的车位检测 → 多模态融合(激光雷达+视觉)。
计算实时性:车载芯片算力有限 → 使用轻量化模型(如TensorRT加速)。
V2X协同:通过车联网获取停车场全局地图,减少车端感知负担。
端到端控制:直接通过强化学习训练“感知-控制”策略(如Waymo的Parallel Autonomy)。
总结
路径规划模块需要平衡 最优性 和 实时性,而控制模块需在 精度 和 鲁棒性 之间取舍。两者协同工作,结合高精度感知和车辆动力学模型,才能实现安全、舒适的自动泊车。未来趋势是进一步融合AI算法与车路协同技术,实现全场景、无地图的自主泊车能力。