近年来,自然语言处理 (NLP) 领域取得了重大进展,这主要得益于 OpenAI 的 GPT 系列等大型语言模型 (LLM) 的涌现。这些强大的模型彻底改变了我们处理自然语言任务的方式,在机器翻译、情感分析和自动文本生成等方面取得了突破性进展。由此催生了大量与自然语言处理相关的 AI 初创团队和产品。
然而,尽管大模型展现出强大的能力,其训练成本却极其高昂。2017 年,训练 Transformer 模型需要约 900 美元。2019 年发布的 RoBERTa Large 模型训练成本约为 160,000 美元。2023 年,OpenAI 的 GPT-4 和 Google 的 Gemini Ultra 的训练成本将分别高达 7800 万美元和 1.91 亿美元。
从上图可以看出,随着时间的推移,模型的规模不断增长训练成本也随之水涨船高,已经超出了大多数普通公司和团队的承受能力。因此,对于大多数 AI 初创团队来说,通过微调预训练模型使其更加适用于特定应用或领域是更为经济实惠且可行的选择。
本文将大模型的微调分为 7 个简单步骤,以便让大家对微调大模型有一个直观的认识。
第1步:明确我们的具体目标
假如我们要训练一个语言模型,让它能够推断我们的用户输入的文本的情感。例如中性,正面,负面。
第2步:选择一个预训练模型,并准备好微调的数据集
目前有许许多多开源的预训练模型,我们需要了解它们的特点从中选择一个合适的模型,并准备好我们的微调数据集。
作为测试,我们选择了GPT2模型,并且使用Hugging Face上开源的数据集。实际业务中,微调用的数据集往往需要AI团队投入大量时间和精力进行准备。
第3步:加载微调数据集
由于我们使用的是Hugging Face开源的数据集,所以直接调用接口加载就可以了。
`import pandas as pd` `from datasets import load_dataset``# 导入数据集` `dataset = load_dataset("mteb/tweet_sentiment_extraction")` `df = pd.DataFrame(dataset['train'])`
接下来,我们打印数据集的部分内容
df.head(10)
第4步:加载分词器
由于大型语言模型 (LLM) 处理的是token而不是单词,因此我们需要一个分词器将数据发送到模型。
from transformers import GPT2Tokenizer``tokenizer = GPT2Tokenizer.from_pretrained("gpt2")` `tokenizer.pad_token = tokenizer.eos_token` `def tokenize_function(examples): ``return tokenizer(examples["text"], padding="max_length", truncation=True)` ` ``tokenized_datasets = dataset.map(tokenize_function, batched=True)` `df1= pd.DataFrame(tokenized_datasets["train"])` `df1.head(10)
为了提高我们的处理性能,生成了两个较小的子集。
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))` `small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
第5步:初始化基础模型
我们选择的基础模型是GPT2,调用相关方法进行初始化即可。
from transformers import GPT2ForSequenceClassification``#初始化基础模型` `model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=3)
第6步:定义评估函数
在开始实际训练之前,我们需要定义一个函数来评估微调后的模型。
import evaluate``import numpy as np`` ``metric = evaluate.load("accuracy")` `def compute_metrics(eval_pred): `` logits, labels = eval_pred `` predictions = np.argmax(logits, axis=-1) `` return metric.compute(predictions=predictions, references=labels)
第7步:训练(微调)并评估
最后一步是训练(微调)模型,调用trainer.train()即可。
training_args = TrainingArguments( `` output_dir="test_trainer", `` #evaluation_strategy="epoch", `` per_device_train_batch_size=1, `` per_device_eval_batch_size=1, `` gradient_accumulation_steps=4 ``)` `trainer = Trainer( `` model=model, `` args=training_args, `` train_dataset=small_train_dataset, #训练集` `eval_dataset=small_eval_dataset, #测试集` `compute_metrics=compute_metrics, #评估函数` `)` `trainer.train()
接下来就可以使用评估函数,对微调的结果进行评估。
trainer.evaluate()
结尾
通过上面的例子我们可以看到对大模型进行微调的过程并不复杂。我们可以根据特定业务需求准备相应数据集,并选择合适的大模型进行适配,使模型更好地应用于特定业务场景中。通过微调,我们可以显著提升大模型在特定任务上的性能,并降低训练成本,这对于大多数 AI 初创团队和中小型企业来说都是一个更经济实惠且可行的选择。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓