普通电脑也能跑!2025最适合本地部署的轻量级大模型

开源大模型更新迭代太快,今年刚推出的模型可能过几个月就过时了。关于这个问题,我想更多的不是思考现在能部署哪些大模型,而是要思考三个方面:

前排提示,文末有大模型AGI-CSDN独家资料包哦!

一是如何找到最新的大模型,二是如何判断本地硬件资源是否满足大模型的需求,三是如何快速部署大模型。

一、如何找到最新的大模型?

1.huggingface

huggingface可以理解为对于AI开发者的GitHub,提供了模型、数据集(文本|图像|音频|视频)、类库(比如transformers|peft|accelerate)、教程等。

几乎所有最新开源的大模型都会上传到huggingface,涵盖多模态、CV、NLP、Audio、Tabular、Reinforcement Learning等模型。

上图红框处就是meta最新开源的Llama3,参数量为8B(80亿参数)。

2.modelscope

huggingface有时存在网络不稳定的问题

这里推荐国内比较好的平台modelscope

由上图可看到,通过modelscope也可以几乎下载所有开源大模型,包括零一万物、百川、通义千问等等。

比如chatglm2-6b,代表它的模型名称为chatglm2,参数量为60亿。

二、如何判断本地硬件资源是否满足大模型的需求?

首先要搞清楚,本地可以部署什么大模型,取决于你的硬件配置(尤其关注你GPU的显存)。

一般来说,只要你本地机器GPU的显存能够满足大模型的要求,那基本上都可以本地部署。

那么大模型类别这么多,有7B、13B、70B等等,我的GPU显存如何准备呢?

在没有考虑任何模型量化技术的前提下:

公式:模型显存占用(GB) = 大模型参数(B)X 2

我之前为了探索千亿级大模型到底需要多少计算资源,用云计算资源部署了Qwen1.5-110B-Chat,看看部署它到底需要多少存储资源,并且测试在不量化、8bit量化、4bit量化下的显存消耗。

实验数据如下:

下载Qwen1.5-110B-Chat共占用硬盘空间208G

本地部署Qwen1.5-110B-Chat没有考虑任何量化技术,占用显存215GB

采用8bit量化部署Qwen1.5-110B-Chat,占用显存113GB。在 Transformers 中使用 LLM.int8() 只需提前安装pip install bitsandbytes即可,使用 LLM.int8() 方法量化transformer模型具体示例如下:

from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
  'qwen/Qwen1___5-110B-Chat',
  device_map='auto',
  load_in_8bit=True,
  max_memory={
    i: f'{int(torch.cuda.mem_get_info(i)[0]/1024**3)-2}GB'
    for i in range(torch.cuda.device_count())
  }
)

采用4bit量化部署Qwen1.5-110B,占用显存62GB,预计1块80GB显存显卡即可部署。

from transformers import BitsAndBytesConfig
import torch
nf4_config = BitsAndBytesConfig(
   load_in_4bit=True,
   bnb_4bit_quant_type="nf4",
   bnb_4bit_use_double_quant=True,
   bnb_4bit_compute_dtype=torch.bfloat16
)

model_nf4 = AutoModelForCausalLM.from_pretrained('qwen/Qwen1___5-110B-Chat', quantization_config=nf4_config)

所以回到主题上,如果追求极致本地部署。

在4bit量化的情况,满足本地机器GPU显存(GB) >= 大模型参数(B)/2,可以尝试本地部署。

举个例子:

如果你有一块T4显卡,显存为16GB。可以支持部署6B、7B参数量级的大模型,如果采用4bit量化,可以尝试32B的大模型(不一定保证部署成功)。

参考论文:

  • LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

  • GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED TRANSFORMERS

三、如何快速部署

推荐使用ollama,像启动镜像一样本地下载运行大型语言模型。

下载模型

Ollama 支持的模型列表见:https://ollama.com/library

ollama pull llama3

启动服务

如果你装好了ollama,启动模型服务只需执行如下命令:

ModelParametersSizeDownload
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Phi-33.8B2.3GBollama run phi3
Mistral7B4.1GBollama run mistral
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Solar10.7B6.1GBollama run solar

四、最后

综上所述,通过huggingface或者modelscope快速了解最新的大模型,并通过公式计算硬件要求,最后可通过ollama快速部署大模型。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要回答用户关于在个人笔记本电脑部署新版deepseek模型的问题。首先,我得确认用户提到的deepseek模型具体是什么。可能是指深度求索公司开发的某个大语言模型,比如DeepSeek-R1或者他们的其他模型。然后,我需要考虑部署这样的模型需要哪些硬件和软件条件。 接下来,硬件方面,个人笔记本通常配置有限,尤其是显卡。新的模型可能参数量很大,比如几十亿甚至上百亿参数,需要足够的显存。假设用户使用的是消费级显卡,比如NVIDIA的GTX或RTX系列,显存可能在8GB到16GB之间。我需要评估这样的配置是否足够运行模型,或者是否需要量化、剪枝等技术来降低资源消耗。 然后,软件方面,用户可能需要安装Python、PyTorch或TensorFlow等框架,以及相关的库如Hugging Face Transformers。还要考虑模型是否开源,是否有预训练的权重可供下载,或者是否需要从零开始训练,但后者在笔记本上几乎不可能。 存储空间也是一个问题,大模型的权重文件可能占用几十GB的空间,用户的笔记本硬盘是否足够?此外,运行时的内存需求,RAM是否足够,可能需要16GB或更多。 另外,需要考虑模型的优化技术,比如使用Hugging Face的Accelerate库进行分布式训练或推理,或者使用ONNX Runtime、TensorRT来优化推理速度。还有,是否支持模型并行或数据并行,以便在资源有限的情况下运行。 用户作为本科生,可能对深度学习的部署流程不太熟悉,可能需要指导如何安装依赖、下载模型、编写推理代码。同时,要提醒注意版权问题,确保使用的模型是开源且允许个人使用的。 后,给出一个步骤指南,包括检查硬件、安装软件、下载模型、运行示例,以及可能的优化方法。还要提到可能的挑战,比如显存不足时的解决方法,或者推荐使用云服务作为备选方案。</think>部署新版DeepSeek模型(如DeepSeek-R1等大语言模型)到个人笔记本电脑本地是可能的,但需根据模型规模、硬件配置和优化技术综合评估。以下是具体分析和步骤指南: --- ### **一、硬件与模型匹配性** 1. **模型规模决定硬件需求** - **7B以下参数模型**(如DeepSeek-MoE-16B): 若使用量化技术(如4-bit/8-bit),可在 **16GB内存 + 8GB显存(如RTX 3060)** 的笔记本上运行,但推理速度较慢(1-3 token/s)。 - **70B以上参数模型**: 需至少 **64GB内存 + 24GB显存(如RTX 4090)**,普通笔记本难以承载,建议云端部署。 2. **显存不足的解决方案** - **CPU+内存推理**:使用`llama.cpp`、`ollama`等工具,将模型加载到内存而非显存(如用GGUF格式),但速度会显著下降(如7B模型在32GB内存下约0.5 token/s)。 - **模型量化**:通过`bitsandbytes`库将模型压缩至4-bit/8-bit,显存占用减少50%-75%。 - **模型切割**:使用`accelerate`库分片加载模型(需代码适配)。 --- ### **二、部署步骤(以7B模型为例)** 1. **环境准备** ```bash # 安装基础工具 conda create -n deepseek python=3.10 conda activate deepseek pip install torch transformers accelerate bitsandbytes ``` 2. **模型下载与量化** - 从Hugging Face下载官方量化版(如`deepseek-ai/deepseek-moe-16b-chat-4bit`): ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "deepseek-ai/deepseek-moe-16b-chat", device_map="auto", # 自动分配CPU/GPU load_in_4bit=True, # 4-bit量化 trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-moe-16b-chat") ``` 3. **推理代码示例** ```python prompt = "如何用Python实现快速排序?" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ### **三、性能优化技巧** 1. **硬件级加速** - 启用CUDA核心:确保PyTorch安装GPU版本(`pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121`)。 - 使用Flash Attention 2:在`from_pretrained`中设置`use_flash_attention_2=True`(需安装`flash-attn`)。 2. **软件级优化** - **批处理加速**:合并多个请求(需调整`batch_size`)。 - **KV Cache缓存**:复用历史计算的Key-Value值(适用于多轮对话)。 --- ### **四、典型笔记本配置参考** | 配置项 | 低要求 | 推荐要求 | |-----------------|------------------|------------------------| | CPU | Intel i5/Ryzen 5 | Intel i7/Ryzen 7 | | 内存 | 16GB | 32GB及以上 | | 显卡 | NVIDIA GTX 1650 | RTX 3060(12GB显存) | | 硬盘 | 50GB可用空间 | NVMe SSD 500GB | --- ### **五、注意事项** 1. **散热问题**:持续高负载可能触发笔记本过热降频,建议外接散热底座。 2. **存储限制**:70B模型仅权重文件约需140GB,需提前清理空间。 3. **替代方案**:若硬件不足,可考虑: - 使用**Colab Pro+**(约$50/月,提供A100 GPU) - 部署轻量版模型(如DeepSeek-1.3B) --- 通过合理选择模型规模和优化技术,本科生完全可以在个人笔记本上运行中小型DeepSeek模型,建议从1B-7B参数模型开始实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值