本文用通俗易懂的方式解释了大模型领域的多个关键技术:RAG(检索增强生成)为AI添加外部知识库;MCP(模型上下文协议)统一AI与工具连接标准;微调让AI在特定领域更专业;提示词工程优化与AI交流方式;向量数据库按相似度存储信息;多模态使AI能处理多种数据类型。文章提供了技术选择建议,强调这些技术可组合使用,共同提升AI能力,让大模型更聪明实用。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
各位朋友,大家好!最近大模型(大语言模型,Large Language Model)火得一塌糊涂,ChatGPT、Claude、文心一言…各种AI助手层出不穷。但是呢,AI圈子里总是冒出一堆"黑话":RAG、微调、提示词工程、MCP、向量数据库…听得人云里雾里的。
别慌!今天咱们就用最接地气的大白话,把这些"高大上"的词汇讲个明明白白,保证让您一听就懂,听完就能跟人聊上两句!
一、什么是RAG?—— 给AI装上"外挂知识库"!
RAG,全称是Retrieval-Augmented Generation(检索增强生成)。这名字听起来很拗口,其实概念超简单!
打个比方
想象一下,您参加考试,老师允许您"开卷"。您不需要把所有知识都背下来,只需要知道怎么快速翻书、查资料,找到答案就行了。
RAG就是给AI装了一个"开卷考试"的能力!
RAG的工作原理
- 您提问:比如问"我们公司2023年第三季度的销售额是多少?"
- AI先去查资料:AI不是直接瞎猜,而是先去您的文档库(可能是公司内部文档、数据库)里搜索相关信息。
- 找到资料后再回答:AI把找到的相关内容"喂"给自己,然后基于这些真实资料生成回答。
RAG的好处
- 减少胡说八道:AI不再凭空编造,而是有根有据。
- 知识实时更新:不用重新训练模型,直接更新文档库就行。
- 处理私有数据:可以让AI访问您的企业内部资料,而不用把所有数据都塞进AI大脑里。
应用场景
- 企业智能客服:访问产品手册、FAQ文档,准确回答用户问题。
- 法律咨询助手:检索海量法律条文,给出专业意见。
- 医疗诊断辅助:查询医学文献,辅助医生诊断。
总结:RAG就像给AI配了个超级图书管理员,让它能随时翻阅资料库,给出有理有据的回答!
二、什么是MCP?—— AI的"万能插座"!
MCP,全称是Model Context Protocol(模型上下文协议)。这是2024年由Anthropic(就是做Claude的那家公司)提出的新标准。
打个比方
您家里有各种电器:电视、冰箱、洗衣机、手机…每个电器的充电接口都不一样,特别麻烦。
如果有一个**“万能插座”**,所有电器都能用同一个接口连接,是不是方便多了?
MCP就是AI世界的"万能插座"!
MCP的作用
传统上,如果您想让AI:
- 读取本地文件
- 查询数据库
- 调用某个API
- 操作某个软件
每次都得写一堆复杂的代码,而且每个AI模型的接口可能还不一样。
**MCP的出现,就是为了统一这个"接口标准"**:
- AI一端:只需要遵循MCP协议。
- 工具/数据一端:也遵循MCP协议。
- 中间:MCP充当翻译官,让两边无缝对接。
MCP的好处
- 即插即用:开发者写一次工具,所有支持MCP的AI都能用。
- 安全可控:可以精确控制AI能访问哪些数据、执行哪些操作。
- 生态繁荣:大家都用同一套标准,工具和插件会越来越多。
应用场景
- 连接本地文件:让Claude直接读取您电脑上的文档。
- 连接数据库:让AI查询公司数据库,生成报表。
- 连接Git:让AI帮您写代码、提交代码、审查代码。
总结:MCP就像USB接口一样,让AI能轻松连接各种工具和数据源,真正成为"万能助手"!
三、什么是微调(Fine-tuning)?—— 给AI"开小灶"!
大模型虽然强大,但它是"通用型"的,什么都懂一点,但不够专精。
打个比方
您请了一个家教,这个家教知识面很广,数理化语文历史都懂。但您家孩子就想提高数学成绩。
微调,就是给这个家教"开小灶",专门训练他的数学教学能力!
微调的工作原理
- 准备专业数据:收集您所在领域的专业数据(比如医学病例、法律案例、客服对话记录)。
- 继续训练模型:用这些专业数据继续训练大模型,让它在特定领域表现更好。
- 获得专属模型:最终得到一个在您的领域特别"懂行"的AI。
微调的好处
- 更专业:在特定领域的回答更准确、更符合行业规范。
- 更高效:不需要从零开始训练,基于已有大模型就行。
- 可定制:可以让AI学会您公司的话术风格、业务流程。
微调 vs RAG
很多人会问:微调和RAG有什么区别?
- RAG:像"开卷考试",现查现用,适合需要实时更新的知识。
- 微调:像"闭卷考试",把知识"刻进"AI的大脑里,适合固定的专业技能。
举个例子:
- 如果您要做客服机器人,公司产品手册经常更新 → 用RAG
- 如果您要做医学影像诊断,需要AI深刻理解医学知识 → 用微调
总结:微调就是让通用AI变成"行业专家",在特定领域发挥更大价值!
四、什么是提示词工程(Prompt Engineering)?—— 跟AI说"人话"的艺术!
提示词(Prompt),就是您给AI的"指令"或"问题"。
提示词工程,就是研究怎么写出"好指令",让AI更准确、更高效地完成任务。
打个比方
您去餐厅点菜:
- 糟糕的点法:“给我来点吃的。”(服务员一脸懵)
- 好的点法:“我要一份麻婆豆腐,微辣,不要花椒,米饭要两碗。”(清晰明确!)
跟AI交流也是一样,说得越清楚,AI理解得越准确!
好提示词的特点
- 清晰明确:告诉AI具体要做什么。
- ❌ “写篇文章”
- ✅ “写一篇1000字的科普文章,介绍人工智能的发展历程,面向普通大众,语言要通俗易懂”
- 提供背景:给AI足够的上下文信息。
- ❌ “分析这个数据”
- ✅ “这是我们公司2024年的销售数据,请分析哪个季度表现最好,哪些产品卖得最火”
- 分步引导:把复杂任务拆解成小步骤。
- “请一步步思考:首先…然后…最后…”
- 角色扮演:让AI进入特定角色。
- “你是一位资深的Python工程师,请帮我审查这段代码…”
- 提供示例:给AI参考样本。
- “请按照以下格式生成:【示例】…”
应用场景
提示词工程无处不在!无论是:
- 写文案
- 写代码
- 数据分析
- 内容创作
- 问题解答
掌握提示词技巧,能让您的AI效率翻倍!
总结:提示词工程就是学会"好好说话",让AI秒懂您的意思,干活又快又好!
五、什么是向量数据库(Vector Database)?—— AI的"记忆宫殿"!
向量数据库,听起来很技术,其实就是一种**特殊的"记忆存储方式"**。
打个比方
您整理书房,有两种方法:
方法一:按字母顺序排列
- 找书时,您得知道书名的首字母。
- 如果您只记得"那本讲心理学的书",就不好找了。
方法二:按"相似度"整理
- 把心理学的书放一起、科幻小说放一起、历史书放一起…
- 找"讲心理学的书",直接去心理学书架找就行,超级方便!
向量数据库就是"方法二"——它把信息按照"相似度"存储和检索!
向量数据库的工作原理
- 把文本变成向量:每段文字都转换成一串数字(向量),相似的文字对应的向量也相似。
- 存储向量:把这些向量存进数据库。
- 相似度搜索:当您提问时,AI把您的问题也变成向量,然后在数据库里找"最相似"的向量,把对应的文字调出来。
向量数据库的好处
- 语义搜索:不需要关键词完全匹配,只要意思相近就能找到。
- 您搜"怎么煮面条",也能找到"制作意大利面的方法"。
- 超高效:从海量数据中快速找到相关内容。
- 支持多模态:不仅能搜文字,还能搜图片、音频!
应用场景
- RAG系统的核心:存储知识库,快速检索相关文档。
- 推荐系统:根据用户兴趣,推荐相似内容。
- 图片搜索:"以图搜图"功能的基础。
总结:向量数据库就像AI的"记忆宫殿",让AI能快速找到"相关"的信息,而不仅仅是"相同"的信息!
六、什么是多模态(Multimodal)?—— AI的"五感"大升级!
早期的AI只能处理文字。
现在的AI,不仅能"看"(图片)、能"听"(语音),还能"说"(生成语音)、能"画"(生成图片)!
打个比方
以前的AI就像一个只会打字聊天的笔友。
现在的AI就像一个能视频通话、能发语音、能分享照片的全能朋友!
多模态的能力
- 图像理解:看懂照片里有什么。
- “这张图片里有几只猫?”
- 视频分析:理解视频内容。
- “这段视频讲的是什么?”
- 语音识别 + 生成:听懂您说话,还能用语音回复您。
- 图像生成:根据文字描述,画出图片。
- “画一只戴墨镜的橙猫”
- 跨模态推理:结合多种信息做判断。
- 给AI一张菜谱图片 + 语音问"需要多少盐?",AI能看懂图片并回答。
应用场景
- 无障碍辅助:帮视障人士"看"世界、帮听障人士"听"声音。
- 智能监控:识别异常行为、车牌识别。
- 内容创作:AI绘画、AI视频剪辑、AI配音。
- 医疗影像分析:看懂X光片、CT扫描。
总结:多模态就是让AI拥有"人类五感",能看、能听、能说、能画,真正成为全能助手!
七、总结对比:大模型"黑话"速查表
术语 | 通俗理解 | 核心作用 | 典型应用 |
---|---|---|---|
RAG | 给AI装"外挂知识库" | 让AI能查资料后再回答 | 企业智能问答、文档助手 |
MCP | AI的"万能插座" | 统一AI与工具的连接标准 | 连接数据库、文件、API |
微调 | 给AI"开小灶" | 让通用AI变成行业专家 | 医疗诊断、法律咨询 |
提示词工程 | 跟AI"好好说话"的艺术 | 让AI更准确理解您的需求 | 所有AI交互场景 |
向量数据库 | AI的"记忆宫殿" | 按相似度存储和检索信息 | 语义搜索、推荐系统 |
多模态 | AI的"五感"升级 | 让AI能处理图片、语音、视频 | AI绘画、视频理解 |
八、如何选择合适的技术?
面对这么多"黑话",到底该用哪个?
根据需求选择
- 需要AI访问最新/私有信息? → 用RAG
- 需要AI连接各种工具和系统? → 用MCP
- 需要AI在特定领域超级专业? → 用微调
- 想让AI更听话、更准确? → 学提示词工程
- 需要处理海量文档、做语义搜索? → 用向量数据库
- 需要处理图片、语音、视频? → 选多模态模型
组合使用,威力更大!
很多时候,这些技术是配合使用的:
案例:企业智能客服
- 用RAG访问产品文档
- 用向量数据库存储历史问答
- 用提示词工程优化回复风格
- 用MCP连接工单系统
- 如果需要处理图片(比如用户发来产品照片),就用多模态能力
读者福利:倘若大家对大模型感兴趣,那么这套大模型学习资料一定对你有用。
针对0基础小白:
如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓