Unsupervised Learning of Stereo Matching


Cost-volume Computation

用对应的分支来计算cost-volume,输入即左右图像,生成cost-volume。这部分是由八个卷基层构成的双塔结构。每个层后面有normalization和Relu层。这些层对两个图像的每个块都会产生特征向量。这些特征向量再进入correlation layer,计算得到cost-volume,这个correlation层就是用的Dispnet-C中的那个correlation层。


Cost-volume Aggregation

之前的方法大多使用包边滤波器去聚合cost-volume。我们却使用图像特征网络去学习这个过程中图像的结构。这个网络从两个输入图像中提取特征。这里说的也就是correlation层后面再接一些卷积层去提取特征。

当得到图像特征之后,用联合滤波器整合cost-volume以及输入图像的颜色信息。特征以cost-volume中的每个通道数与输入的颜色信息相融合,然后再连接三个卷积层来产生最终的cost-volume。这是模仿了传统立体匹配方法中的成本聚合过程。这种学习策略更好因为它可以自适应的去找到最合适的参数,细节稍后讨论。


Disparity Prediction

经过处理过后的cos-volume,用winner-take-all的策略来产生视差映射。然而,argmax操作反向无法求,所以用一个soft argmax的操作。在每个像素求得coat-volume中的最大值的系数。

经过上述三个操作。可以直接端到端的来处理立体匹配问题了







封闭回路的无监督学习结构化表示 封闭回路的无监督学习结构化表示是一种机器学习方法,旨在通过建立闭环反馈以自动地学习数据之间的结构化表示。在无监督学习中,我们通常没有标签的辅助信息,因此要求模型能够从数据中自动发现隐藏的结构和模式。 封闭回路的无监督学习方法的关键思想是通过对模型输出和输入进行比较来进行训练。在这个闭环中,模型的输出被重新注入到模型的输入中,从而形成了一个持续的迭代过程。模型通过调整自身的参数来最小化输入和输出之间的差异,以此来改善所学到的表示。 使用封闭回路进行无监督学习的一个例子是自编码器。自编码器是一种神经网络模型,它的输入和输出都是相同的。模型的目标是通过学习如何将输入编码为一个低维的表示,并且能够从这个低维表示中重构出输入。在训练过程中,自编码器通过最小化输入和重构输出之间的差异来调整自身的参数。 封闭回路的无监督学习方法有许多优点。首先,由于无需标签,这种方法可以适用于大量未标记的数据。其次,学习到的结构化表示可以用于许多任务,如数据压缩、降噪、特征提取等。此外,通过引入封闭回路,模型可以在训练过程中不断自我纠正,从而改善表示的质量。 总之,封闭回路的无监督学习方法通过建立闭环反馈来自动地学习数据之间的结构化表示。该方法可以应用于无标签数据,并且通过迭代过程来不断改善所学到的表示。这种方法在很多任务中都具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值