【YOLOv7绘制labels.jpg和labels_correlogram.jpg】只用更改一处代码+附带这两个图的解释(有更新,可能出现与tb_writer.add_histogram相关的报错)

文章讲述了如何在YOLOv7的训练过程中修改train.py文件,以开启图像绘制功能,包括类别数量直方图、边界框尺寸分布以及变量相关性的图表。这些图表有助于理解数据集的分布和标签间的关联。同时,提到了在遇到错误时可暂时注释掉这部分代码,但需记得恢复。
摘要由CSDN通过智能技术生成

效果图

在这里插入图片描述

在这里插入图片描述

发现3:左图的左下图等同于右图的第一行的子图

发现4:右图每个子图的横坐标、纵坐标需要对应到该列该行上去,例如第一行表示的就是x,y的关系图,第二行第一列表示的就是x,width的关系图…最后一个就表示的是width,height的关系图

更改方式

  • 原始YOLOv7是关掉这个绘制代码的,打开即可

train.py中按住快捷键Ctrl+F搜索plot_labels定位如图位置

在这里插入图片描述

解释

labels.jpg : 统计训练集数据每个类别数量直方图(左上角)、把所有框的x和y中心值设置在相同位置看每个训练集数据每个标签框的长宽情况(右上角)、绘制 x, y 变量直方图来显示数据集的分布(左下角)、绘制 width, height 变量直方图来显示数据集的分布(右下角)。

labels_correlogram.jpg : 汇总训练集数据的标签labels,并画出训练集数据标签 x, y, width, height 4个变量之间的关系图(线性或非线性,有无较为明显的相关关系)

更新记录

有必要时(例如出现下面的错误时)把这里给注释掉,差异只是不绘制labels.jpglabels_correlogram.jpg这两张图了,但是记得还原!把注释再关掉

在这里插入图片描述

因为可能会出现下面的报错:

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟孟单单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值