五大开源RAG(Retrieval-Augmented Generation)评估框架详解

检索增强生成(Retrieval Augmented Generation,简称RAG)技术当下正成为提升大型语言模型(LLM)能力的关键。RAG通过将外部知识源整合到LLM中,显著提高了模型的准确性和上下文感知能力。然而,评估这些RAG系统的性能并非易事,这就催生了众多开源的RAG评估框架([RAG(Retrieval-Augmented Generation)评测:评估LLM中的幻觉现象]。今天我们一起了解一些开源的RAG评估框架。

一、Ragas(https://github.com/explodinggradients/ragas)

(一)框架概述

Ragas 是一个专门为评估检索增强生成(RAG)管道而设计的强大框架。它以其对 RAG 评估的综合方法,在开发者和数据科学家群体中迅速获得了认可。

(二)关键特性

  1. 定制化评估指标:提供了一套专为 RAG 系统量身定制的评估指标,能够准确地衡量 RAG 系统在不同方面的性能表现。

  2. 灵活的评估模式:支持本地和分布式评估,这使得它可以适应不同的计算环境和数据规模。无论是在单机上进行小规模的测试,还是在分布式集群上处理大规模数据的评估,Ragas 都能胜任。

  3. 与流行框架集成:能够无缝地与流行的大型语言模型(LLM)框架集成。这种集成能力使得开发者可以方便地将 Ragas 融入到现有的 RAG 系统开发流程中,减少了开发的复杂性和工作量。

(三)示例

from ragas import evaluate
from datasets import Dataset

# 假设评估数据已处于合适的格式
eval_dataset = Dataset.from_dict({
    "question": ["What is the capital of France?"],
    "contexts": [["Paris is the capital of France."]],
    "answer": ["The capital of France is Paris."],
    "ground_truths": [["Paris is the capital of France."]]
})
# 运行评估
results = evaluate(eval_dataset)
print(results)

二、Prometheus(https://github.com/prometheus/prometheus)

(一)框架概述

Prometheus 主要以其作为监控系统和时间序列数据库而闻名,但由于其强大的数据收集和警报功能,在大型语言模型(LLM)评估的背景下也值得一提。

(二)关键特性

  1. 强大的数据收集与存储:能够有效地收集和存储与 LLM 系统相关的数据,包括 RAG 管道的数据。这些数据对于分析系统的性能和行为至关重要。

  2. 强大的查询语言:拥有一种强大的查询语言,使得用户可以方便地对收集到的数据进行查询和分析。通过这种查询语言,用户可以深入了解系统在不同时间点的性能表现,以及各种参数之间的关系。

  3. 灵活的警报系统:具备灵活的警报系统,当系统出现异常情况时,能够及时发出警报。这有助于及时发现和解决问题,确保系统的稳定运行。

(三)应用场景

Prometheus 可用于监控基于 LLM 的系统(包括 RAG 管道)的性能和健康状况。虽然它不是一个专门针对 LLM 的工具,但它收集和分析时间序列数据的能力对于跟踪 LLM 性能和系统健康的长期趋势非常有价值。例如,通过定期收集 RAG 系统在不同查询下的响应时间、准确率等数据,并利用其查询语言进行分析,可以发现系统性能的变化趋势,以及是否存在潜在的问题。当响应时间突然增加或准确率下降时,警报系统可以及时通知相关人员进行处理。

三、 DeepEval(https://github.com/confident-ai/deepeval)

DeepEval是另一个在LLM评估领域脱颖而出的框架,专为LLM输出设计。它类似于Pytest,但专注于LLM,提供了广泛的评估指标,并支持LLM输出的单元测试。

特点:
1)融入了最新的LLM输出评估研究成果。

2)提供广泛的评估指标。

3)支持LLM输出的单元测试。

4)确保LLM生成内容的质量和一致性。

四、Phoenix(https://github.com/Arize-ai/phoenix)

(一)框架概述

Phoenix 是由 Arize AI 开发的一个开源工具,用于 AI 的可观察性和评估。虽然它并不专门专注于 RAG 工作流程,但它的能力使其成为 LLM 评估的一个强大选项。

(二)关键特性

  1. 实时监控:提供对 AI 模型的实时监控功能,能够及时获取模型在运行过程中的各种信息,如输入输出数据、性能指标等。

  2. 性能分析与问题检测:提供了用于分析模型性能和检测问题的工具。通过这些工具,可以深入了解模型的优缺点,及时发现可能存在的问题,如过拟合、欠拟合等。

  3. 广泛的应用支持:支持广泛的 AI 和 ML 用例,包括 LLMs。这使得它可以应用于多种不同类型的人工智能项目中,具有较高的通用性。

(三)应用场景

Phoenix 的优势在于它能够提供对模型性能的全面洞察。例如,在一个大型的语言翻译项目中,使用 Phoenix 可以实时监控翻译模型的性能。通过分析模型对不同语言文本的翻译效果,发现可能存在的翻译错误或不准确的地方。同时,它还可以检测模型是否存在过拟合现象,即对训练数据过度拟合,导致在实际应用中对新数据的翻译效果不佳。根据这些分析结果,可以对模型进行调整和优化,提高翻译的质量和效率。

五、ChainForge(https://github.com/ianarawjo/ChainForge)

(一)框架概述

ChainForge 是一个开源的可视化编程环境,用于分析和评估 LLM 响应。它的设计目的是使提示工程和响应评估的过程更加直观和易于访问。

(二)关键特性

  1. 可视化界面:具有可视化的界面,用于设计和测试提示。通过这个界面,开发者可以直观地看到提示的结构和内容,方便地进行调整和优化。

  2. 多提供商支持:支持多个 LLM 提供商,这使得用户可以在不同的 LLM 模型之间进行选择和比较。

  3. 输出比较与分析工具:提供了用于比较和分析 LLM 输出的工具。通过这些工具,可以对不同 LLM 模型的输出进行对比,找出它们的优缺点,以便选择最适合的模型。

(三)应用场景

ChainForge 的可视化方法在 LLM 评估中脱颖而出。例如,在一个内容生成项目中,需要选择一个最适合的 LLM 模型来生成高质量的文章。通过 ChainForge 的可视化界面,可以设计不同的提示,并观察不同 LLM 模型对这些提示的响应。通过比较这些响应,可以发现哪个模型能够生成更符合要求的文章,从而选择该模型进行实际应用。

随着 LLM 开发领域的不断发展,我们可以预期这些评估工具也会不断进化,并且会有新的工具出现([RAG(Retrieval-Augmented Generation)评测:评估LLM中的幻觉现象]。未来,评估工具可能会更加智能化,能够自动适应不同的项目需求和环境。同时,随着 RAG 技术([检索增强思考 RAT(RAG+COT):提升 AI 推理能力的强大组合]的广泛应用,对评估工具的准确性和效率要求也会越来越高。因此,保持对 LLM 评估最新发展的了解对于任何从事这些强大 AI 系统工作的人来说都是至关重要的。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### RAG(检索增强生成)技术概述 #### 定义与目标 检索增强生成 (Retrieval-Augmented Generation, RAG) 是一种优化大型语言模型输出的方法,该方法使模型可以在生成响应前引用训练数据源之外的权威知识库[^1]。此过程旨在提高模型对于特定查询或任务的理解能力,尤其是在涉及广泛背景知识的需求下。 #### 架构特点 RAG 结合了检索技术和生成技术的优势,形成了一种新型的人工智能模型架构。具体来说,这类模型会从庞大的文档集合中动态检索相关信息以辅助文本生成,进而提升输出的质量和准确性[^2]。 #### 动态知识利用 值得注意的是,RAG 的一大特色就是可以实时访问最新的外部资料,这意味着即便是在未曾接受过专门训练的主题上,也能够给出深入浅出的回答。这得益于其可以从大规模的知识库中获取最新且相关的信息片段作为输入的一部分[^4]。 ### 工作原理详解 当接收到用户请求时,RAG 首先执行一次高效的检索操作,在预先构建好的数据库里查找最有可能帮助解决问题的内容摘要;随后基于这些找到的数据点来进行最终答案的合成工作。整个过程中既包含了对已有事实的学习又融入了即时获得的新见解,使得回复更加精准可靠[^3]。 ```python def rag_process(query): retrieved_docs = retrieve_relevant_documents(query) generated_response = generate_answer(retrieved_docs) return generated_response ``` 上述伪代码展示了简化版的 RAG 处理逻辑:接收查询 -> 检索相关文件 -> 生成回应。 ### 应用场景举例 由于具备强大的上下文理解和信息整合能力,RAG 特别适合应用于那些依赖于广博专业知识领域内的问答系统开发之中。例如医疗咨询平台、法律服务机器人以及教育辅导工具等都可以从中受益匪浅。此外,在企业内部知识管理方面也有着广阔的应用前景,比如客服中心自动化应答解决方案等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值