RAG还是微调,怎么选?简单用三个案例来分析RAG、微调如何选择?

要想提高大模型在特定行业与场景中输出的适应性与准确性,除了使用RAG,还可以使用自己的数据对大模型进行微调。那么这两种方案的区别及选择的标准是什么呢?

我们首先简单了解一下大模型微调。以OpenAI公司的GPT大模型为例,一个GPT架构的大模型的训练通常需要经过以下几个阶段。

1.预训练阶段

这是整个过程中最复杂的阶段,像GPT-4这样的模型在预训练阶段通常需要成千上万个GPU,在海量的无标记的数据上训练数月。这个阶段其实占用了全部阶段的大部分时间。预训练阶段的输出模型一般叫基座模型,有的基座模型会被发布(比如开源的Llama),而有的基座模型不会被发布(比如GPT-4)。

基座模型本身是可以直接使用的,但通常不是一个“回答问题”的模型,而是一个“补全文档”的模型。如果你想让基座模型来回答问题,就必须假装输出一个文档,然后让它来“补全”。比如,你必须提示“下面是一首赞美祖国的诗歌:”,然后让模型来补全,而不能直接要求它“写一首赞美祖国的诗歌”。如何让基座模型变成一个交互式的AI助手呢?那就需要进入后面的阶段:微调。

2.微调阶段

在宏观上可以把后面的阶段都归到微调,即受监督微调、奖励模型+基于人类反馈的强化学习(Reinforcement Learning from Human Feedback,RLHF)阶段。简单地说,这个阶段就是对基座模型在少量(相对于预训练的数据量来说)的、已标注的数据上进行再次训练与强化学习,以使得模型更好地适应特定的场景与下游任务。比如:

(1)强化某个方面的应用能力(比如利用大模型进行情感检测)。

(2)适应特定的使用场景(比如针对人类对话,输出无害、安全的内容)。

(3)适应特定的知识领域(比如医疗或法律行业的特定术语或语义)。

(4)适应某些可标注数据相对稀缺的任务。

(5)适应特定的语言输出要求(比如适应某个场景的语言风格)。

与预训练相比,微调对算力的要求与成本都大大降低,这使得微调对于很多企业来说,在成本与技术上是相对可行的(当然,与RAG范式相比,成本仍然较高)。

大模型微调是一个相对专业的技术任务,涉及较多底层的深度学习的架构、参数及算法知识,以及多种技术(比如全量微调、Prompt Tuning,Prefix Tuning,P-tuning等)。不同的方法对资源与成本、指令数据等有不同的要求,当然达到的效果也不一样。另外,为了简化微调工作,也有一系列用于微调的工具、框架甚至平台可以使用,比如OpenAI针对GPT模型提供的在线微调API、重量级的大模型并行训练框架DeepSpeed等。

实施微调除了需要算力与算法、成熟的平台与工具,还需要生成与标注具有一定规模的高质量数据集,这通常由大量的指令与输出的样本来组成。对于一些行业特征特别突出的垂直领域,**数据集的准备是最大的挑战。**这些挑战如下。

  • 数据从哪里采集,如何确保专业性与有效性。

  • 对多形态的数据如何清洗与归一。

  • 怎么标注数据的提示、输入、输出等。

  • 处理老化数据,即知识过期后如何反馈到大模型。

继续以前面的例子来说明微调和RAG的区别。如果大模型是一个优秀学生,正在参加一门考试,那么RAG和微调的区别如下。

RAG: 在考试时给他提供某个领域的参考书,要求他现学现用,并给出答案。

微调:在考试前一天对他进行辅导,使他成为某个领域的专家,然后让他参加考试。

如何在RAG与微调之间选择适合自己的增强生成方案呢? 在实际应用中,需要根据自身的环境(应用场景、行业特征、性能要求等)、条件(数据能力、技术能力、预计成本等)、测试结果(指令理解、输出准确性、输出稳定性等)等来选择(见图1-15)。

与大部分的IT技术一样,无论是微调还是RAG,都有优点,也都有缺点。下面简单地做一下对比供参考(随着两种技术的发展,总结的一些优点和缺点可能会发生变化)。


RAG

微调

优点

1.使用更灵活,可根据需要随时调整Prompt以获得期望输出。

2.技术上更简单。

3.可以输入知识增强的Prompt让大模型立即适应领域知识。

4.无额外的训练成本

1.大模型自身拥有特定知识的输出能力,或适应特定的输出格式。

2.对下游应用更友好,在特定的任务中使用更简单。

3.可以节约推理阶段使用的token,推理成本更低

缺点

1.容易受限于上下文窗口的大小。

2.输入本地知识增强的Prompt在实现上下文连续对话时较困难。

3.大模型输出的不确定性在高准确性的场景中会增加失败概率。

4.输入带有上下文的、较长的Prompt会带来较高的推理成本。

5.随着模型的迭代,可能需要重新调整Prompt

1.非开箱即用。

2.需要额外的数据准备、标注、清洗成本,以及必要的算力与训练成本。

3.需要足够的技术专家,特别是机器学习(Machine Learning,ML)专家、数据专家。

4.微调无法阻止出现“幻觉”问题,过度微调甚至可能导致某些能力下降。

5.模型迭代周期长,对实时性要求高的知识并不适用

无法确切地说在什么场景中必须使用RAG、在什么场景中必须使用微调。结合当前的一些研究及普遍的测试结果,可以认为在以下场景中更适合考虑微调的方案(在不考虑成本的前提下)。

(1)需要注入较大数据量且相对稳定、迭代周期较长的领域知识;需要形成一个相对通用的领域大模型用于对外服务或者运营。

(2)执行需要极高准确率的部分关键任务,且其他手段无法满足要求,此时需要通过高效微调甚至全量微调来提高对这些任务的输出精度,比如医疗诊断。

(3)在采用提示工程、RAG等技术后,无法达到需要的指令理解准确、输出稳定或其他业务目标。

在除此之外的很多场景中,可以优先考虑使用RAG来增强大模型生成。当然,在实际条件允许的前提下,两者的融合应用或许是未来更佳的选择。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈


我们重点来讨论几个案例,来看一下每个案例到底选择RAG,还是微调,或者是RAG+微调。

第一个案例:比如说我们想打造一个AI的投资理财规划师,比如我根据用户的风险偏好,还有一些用户的情况来给他一个合理的建议,比如说基于一些目前市场上的情况,那这种AI的规划师我们到底怎么打造?那这里我们需要考虑的是RAG还是微调呢?大家可以先思考一下。

那为了回答这个问题,我们首先要剖析那这样的系统它到底需要具备什么样的能力?

1、第一个很重要,就是可以处理实时的数据,或者叫动态的数据

2、它也需要具备很强的对话能力

3、它也需要具备一定的金融行业的背景,也就是需要有金融能力

那我们一个一个来看一下:

第一点:对于动态数据来讲,前面一篇文章也说到过RAG肯定是最适合去处理动态数据的,它可以从市场上抓取一些相应的数据,比如说实时的数据来去解决用户的问题。

第二点:很强的对话能力,它其实指的是上一篇文章所说到的第六点,就是我们的AI规划师,它需要具备通用模型所具备的很强的对话能力,所以很显然这里还是RAG,如果我们进行微调的话,它有可能会失去比较流畅的对话能力。

第三点:金融能力,那实际上其实市面上很多效果比较好的通用大模型,它其实也具备一定的金融能力的,因为在训练的时候,大模型已经被灌输了很多跟金融相关的数据,所以有可能微调在这里可能是不太必要的。

假如我们想打造这样的AI投资理财规划师,那我们首选大概率是RAG

第二个案例:那第二个场景,比如我们想打造一个金融领域的信息抽取的Bot,比如说我希望AI可以去看一个研究报告,然后把研究报告里的一些相应的关键的信息把它取出来,或者甚至编写类似格式的研究报告。那对于这个场景用RAG?还是微调呢?

跟上面的例子一样,我们首先要理清楚它到底需要具备什么样的能力?

1、这里很明显,它需要具备很强的抽取能力。

2、其次它也需要具备一定的金融领域的能力,也就是对金融领域的一些文本,它需要有一个比较强的理解能力,那以至于像对话能力在这个场景里面是不太需要的。

第一点:对于抽取能力,我们可能大概率需要微调,因为它属于一个特定的能力,而且通用大模型的大概率可能对于这个特定的能力是比较弱的,所以我们需要通过一些微调的方法来加强这个能力。

第二点:其实跟上面是一样的,在这个场景下,我也不太需要去处理什么动态的数据,因为我们只是希望给定一个信息,然后从这个信息里面去抽取我们想要的东西。

综上所述,那对于第二个场景,实际上大概率需要做微调。

第三个案例:比如我们想做一个销售机器人,比如我们希望AI可以帮助我们去卖产品,比如说卖给用户或者卖给企业,那对于这个场景,我们使用RAG还是微调呢?

还是跟上面一样,我们要列出它所需具备哪些能力?

1、是我们需要大量的一些产品的数据,比如我们希望AI去卖东西,那肯定它得知道产品到底是什么,而且产品本身它是经常会改变的。所以产品数据,实际上要作为一个知识库,然后给我们的大模型去使用,所以这个对应到RAG。

2、关于销售的技巧和语气本身也比较重要,因为销售跟客服是不太一样的工作模式,因为客服更像是一个被动式的,所以你只要有问题问我,我只要提供回复即可。销售更多是一个主动的模式,这里面就很考验各方面能力,比如说销售的流程、销售的技巧、以及我以什么样的口吻去跟客户去交流,所以不同的公司它有不同的销售流程,而且即便在同一个公司里面,不同的销售人员,他采用的语气还有一些技巧也是不一样的,所以这些能力本身呢,可能大概率也没有办法用通用大模型来解决,可能需要微调。

根据上面总结下来,第三个案例需要RAG+微调

既然大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我需要回答用户关于RAG(检索增强生成)与微调的关系及实现方法的问题。首先,我需要回顾用户提供的参考资料,确保回答准确引用相关信息。 首先,根据引用[3]和[4],RAG微调是互补的,可以结合使用来提升模型性能。用户提到微调能让模型具备更好的知识和逻辑能力,而RAG则擅长信息检索,所以两者结合可能更有效。 接下来,实现方法部分需要分点说明。根据引用[1]和[2],基于查询的RAG方法是将检索结果和查询合并输入生成模型,而微调则调整模型参数以适应特定任务。结合使用时可能需要分阶段进行,比如先微调再集成RAG,或者联合优化。 需要确保回答结构清晰,分点列出关系、实现方法及结合策略。同时,生成相关问题时要覆盖两者的优缺点、结合优势和应用场景。最后,检查引用是否正确,每个引用标记都要对应到用户提供的资料。</think>### RAG微调的关系及实现方法 #### 一、RAG微调的关系 1. **功能互补性** RAG(检索增强生成)通过外部知识库动态补充生成所需信息,解决模型静态知识局限性的问题[^1];微调(Fine-tuning)则通过调整模型参数,使其适应特定领域或任务,提升逻辑推理与知识表达能力[^4]。两者分别从**动态知识扩展**和**模型能力优化**两个维度增强大模型性能[^3]。 2. **技术协同性** RAG可为微调提供高质量数据支持(如检索结果作为训练样本),而微调后的模型能更精准地处理RAG检索内容,形成闭环优化[^2]。例如,在科研场景中,微调使模型具备实验设计能力,RAG则补充最新论文数据[^4]。 --- #### 二、RAG实现方法 1. **基于查询的RAG(Query-based RAG)** - 将用户查询与检索内容拼接为增强输入,直接引导生成模型。 - 示例流程: ```text 输入 = [检索段落1] + [检索段落2] + "用户问题:..." ``` - 优势:简单易用,适合通用问答场景。 2. **分阶段RAG(Phased RAG)** - 先通过检索筛关键信息,再对生成模型进行多轮推理。 - 适用场景:需要复杂推理的任务(如数学证明)。 --- #### 三、微调实现方法 1. **任务导向微调** - 使用领域数据(如医学文献)调整模型参数,使其输出符合专业术语与逻辑[^2]。 - 工具:LoRA(低秩适配)减少计算成本。 2. **RAG-aware微调** - 训练模型学习如何融合检索内容与内部知识。例如: - 输入格式:`[检索文本]<sep>[原始问题]` - 目标输出:基于两者结合生成答案[^3]。 --- #### 四、RAG微调的结合策略 1. **Pipeline模式** 先通过RAG检索增强输入,再使用微调后的模型生成结果。 $$P_{\text{output}} = \text{Generator}_{\text{fine-tuned}}(\text{RAG}_{\text{retrieve}}(Q))$$ 适用场景:客服系统(检索知识库+领域微调回复)。 2. **联合优化模式** 在训练时同时优化检索器与生成模型参数,例如: - 使用强化学习对齐检索结果与生成质量[^3]。 - 损失函数:$L = L_{\text{retrieval}} + \lambda L_{\text{generation}}$。 --- #### 五、关键选择依据 | 场景特点 | 推荐技术 | 原因 | |-------------------------|------------------------|----------------------------------------------------------------------| | 数据更新频繁 | RAG优先 | 动态检索最新信息 | | 需深度领域知识理解 | 微调优先 | 提升模型内在推理能力 | | 复杂任务(如科研分析) | RAG+微调联合 | 兼顾知识获取与逻辑处理[^3] | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值