在上一篇文章 小白也能看懂的MaxKB+大模型实现定制化本地知识库实战教程 中我们搭建了MaxKb知识库系统,这个系统的特色就在于知识库和高级编排应用两大功能,今天我们就利用这两大特色功能实现一个AI客服系统。
阿波罗AI专属客服
一、需求目标
实现阿波罗AI专属AI客服系统,管理员可以上传与阿波罗AI相关的文档,从而建立一个以阿波罗AI为核心内容的知识库。该知识库将涵盖阿波罗AI的简介、使用教程、对接文档、模型介绍、定价信息以及客服联系方式等内容。用户可以通过向该客服提问的方式,利用大模型根据知识库的内容提供准确的回答。通过这一客服系统,企业能够显著降低人工客服成本,实现24小时在线服务,从而提升网站整体用户体验。
二、构造知识库
1、新建知识库
需要注意的是,知识库的描述应采用结构化的格式,而不是随意的叙述。这种结构化的描述能够更清晰地呈现知识库的主要内容,帮助AI更深入地理解和索引相关知识。例如:
知识库概述:
简要介绍知识库的目的和功能。
核心内容:
阿波罗AI简介:提供阿波罗AI的背景信息和主要特点。
使用教程:详细说明如何使用阿波罗AI,包括步骤和注意事项。
对接文档:提供与阿波罗AI集成的技术文档和API说明。
模型介绍:阐述阿波罗AI的模型架构及其优势。
定价信息:列出不同服务和产品的定价方案。
客服联系方式:提供用户在需要帮助时可以联系的渠道。
2、添加文档
添加使用教程、API开发文档、模型列表定价相关的网页链接。
文档状态为成功并开启,为可用。
3、命中检测
知识库建立完毕之后,可以使用命中测试功能检测相关关键字能否命中知识库中相关的内容。
参数设置说明
检索模式:当前支持向量检索、全文检索和混合检索 3 种检索模式。
(1)向量检索:使用向量模型通过向量距离计算与用户问题最相似的文本分段。适合文本量大的情况
(2)全文检索:通过关键词检索,返回包含关键词最多的文本分段。适合文本量小的情况
(3)混合检索:同时执行全文检索和向量检索,再进行重排序,从两类查询结果中选择匹配用户问题的最佳结果。适合文本量中等的情况
相似度:相似度越高代表问题和分段的相关性越强。
返回分段数 TOP : 返回符合条件的 Top N 个分段。
到此我的知识库构造完成。如果需要构造本地文档类型的知识库,操作步骤基本相同。
二、编排客服应用
为了更全面的了解MaxKB的使用,这里我们建立高级应用,使用其工作流编排系统。
这个功能可以说是一种颠覆性的创新,因为他降低了软开的门开,即使是一个编程小白,也能快速在几分钟之内发布一款基于AI大模型的应用。
1、创建应用
2、编排工作流
工作流通俗的解释就是你要达成你的目标需要哪些步骤。下面是阿波罗AI客服的工作流:
上面的图是不是看起来很复杂,其实一点也不简单 (手动狗头,其实很简单):
我们只需要把编排工作流的过程想象成在画流程图一样,下面我就把上面的工作流拆解成流程图,对比来看,是不是就很好理解了:
再简化就是下图:
在这个工作流中,每个环节都可以进行精细化设置和微调,例如为大模型赋予特定角色、调整知识库的检索模式、以及自定义判断器条件等。这些功能充分利用了模型的强大能力,包括联网、文件解析和生成图片等。
当前演示的工作流只是基础版本,我们尚未充分利用组件和函数的潜力,它们的引入将进一步增强工作流的功能和灵活性。
我想强调的是,这一工作流的编排没有限制,您可以充分发挥您的创造力和组织编排能力,构建出强大且实用的功能。通过灵活的设计,您将能够实现更复杂的应用场景,满足具体需求。
到此我们的应用构建完成了,点击右上角发布即可。
三、应用发布和使用
访问应用
来到客服界面
好啦,客服功能完成啦,后续就是通过优化知识库的内容来提高回答的准确度和检索的准确度。你还没构造自己的应用吧,快去尝试一下吧!