我的本地AI助手搭建-self

一、环境准备
1.理论环境要求
1.1. 硬件配置
本地部署需要一台高性能的计算机或服务器,具体硬件要求如下:

  • 处理器(CPU):至少需要 8 核 16 线(Intel 或 AMD),推荐使用更高核数的 CPU(例如 12 核、16 核或更多),以支持多线程和并行计算。
  • 内存(RAM):建议配备 32 GB 到 64 GB 的内存。具体内存需求取决于模型大小和任务复杂度,大型模型可能需要更高的内存。
  • 存储设备:
  • 使用 SSD(固态硬盘) 作为主存储设备,至少需要 50 GB 至 100 GB 空间用于操作系统、模型权重和其他项目文件。
  • 如果需要更大容量的存储空间,可以考虑使用扩展型 SSD 或云存储服务(如 AWS S3、Azure Storage 或 Google Cloud Storage)。
  • GPU(可选):
  • 如果是基于 GPU 的混合计算环境(CPU + GPU),推荐使用 NVIDIA RTX 系列显卡 或 AMD Radeon 系列显卡,但本地部署时通常不需要直接配置显卡。

1.2. 操作系统
本地部署需要一个支持大模型训练和推理的操作系统。以下是一些推荐:

  • Linux:Linux(尤其是 Ubuntu)是最佳选择,因为其在 AI 和机器学习任务中高度优化,并且有丰富的工具链和社区支持。

  • 推荐使用 Ubuntu 22.04 LTS 或更高版本。

  • 如果是 64-bit 操作系统,可以提高计算效率。

  • macOS(可选):如果需要在苹果设备上运行,推荐使用 MacOS Catalina 及以上版本。不过 macOS 的支持相对 Linux 稳定性较低。

  • Windows(可选):本地部署在 Windows 上也是可行的,但需要注意一些工具链的兼容性和稳定性。
    1.3. 软件和环境
    为了本地部署 AnythingLLM 和 Ollama,需要安装相关的软件并配置环境:

  • Python 环境:

  • 在 Linux 或 macOS 上,推荐使用 Python 3.9 或更高版本。

  • 安装 Python 环境时,可以使用 virtualenv 或 venv 创建虚拟环境,以隔离项目依赖的环境变量。

  • Jupyter Notebook(可选):

  • 如果需要运行交互式 notebook,可以安装 Jupyter 和相关内核(如 PyTorch、TensorFlow 等)。

  • LLM 工具链:

  • 安装 Ollama 和 AnythingLLM 的工具链。通常可以通过以下步骤安装:
    BASHcd /path/to/ollama
    ./ollama init --local

  • 模型存储和推理工具:

  • 使用 Ollama 客户端软件(如 ollama-cli)进行模型推理。


1.4. 安全性和稳定性
本地部署需要关注以下安全问题:

  • 操作系统安全:确保操作系统和所有依赖的软件都是最新版本,避免漏洞利用。
  • 权限管理:在Linux中,使用sudo或启用root账户时小心权限冲突。可以参考ls -l查看文件和目录的权限设置。
  • 存储设备的安全性:使用强密码保护SSD或其他存储设备,并定期备份重要数据。

1.5. 参考官方文档
为了确保部署过程顺利,建议查阅以下官方文档:

  • AnythingLLM 官方文档:https://github.com/anthropic/anythingllm
  • Ollama 官方文档:https://ollama.ai/
  • 官网提供详细的安装指南和运行示例。
  • AWS、Azure 或 Google Cloud 的官方指南:
  • 如果需要在云平台上部署,可以参考上述平台的官方文档。

1.6.总结
本地部署 AnythingLLM 和 Ollama 的主要配置要求是:
1.硬件:至少 8 核 CPU 和 32 GB RAM。
2.操作系统:推荐使用 Ubuntu 22.04 LTS 或更高版本。
3.软件环境:安装 Python、Jupyter Notebook 和相关工具链(如 Ollama 和 AnythingLLM)
2.本机操作系统参数
版本:window10专业版
系统类型:64 位操作系统, 基于 x64 的处理器
处理器:Intel® Core™ i7-6700 CPU @ 3.40GHz 3.40 GHz
机带RAM:32.0 GB (31.9 GB 可用)
二、安装包准备
1.线上模式(互联网模式)
直接访问各大模型官网提供的在线AI助手–连接网络即可,例如:
1.1.deepseek:https://chat.deepseek.com/

1.2.百科助手 https://uj3wrm.smartapps.baidu.com/

1.3.文心一言:https://yiyan.baidu.com/

2.线下模式(本地部署模式)
需要下载对应的大模型(如deepseek、Qwen2.5等)。
2.1.选择下载开源大语言模型
通过开源框架ollama,下载运行已有的大语言模型,地址:https://ollama.org.cn/library。命令窗口运行如下命令:ollama run xxx(模型名称和版本).
ollama run deepseek-r1:7b
ollama run qwen2.5:7b
… …
2.1.1.deepseek-r1
DeepSeek的第一代推理模型,性能与OpenAI-o1相当,包括基于Llama和Qwen的DeepSeek-R1提炼出的六个密集模型。
2.1.2.qwen2.5
Qwen2.5 模型在阿里巴巴最新的大规模数据集上进行预训练,数据集包含多达 18 万亿个 tokens。该模型支持最多 128K 个 tokens,并具有多语言支持。
2.2.图形化对话工具
2.2.1.AnythingLLM
‌ AnythingLLM是一个由Mintplex Labs Inc.开发的全栈应用程序,旨在将任何文档、资源或内容片段转换为大语言模型(LLM)在聊天中可以利用的相关上下文。它支持几乎所有主流的大模型和多种文档类型,如PDF、TXT、DOCX等,并且具有高度的可定制性和开源特性‌12。https://anythingllm.com/desktop
下载 :https://s3.us-west-1.amazonaws.com/public.useanything.com/latest/AnythingLLMDesktop.exe

	2.2.2.Chatbox AI
	Chatbox AI 是专门用于与各种语言模型对话的图形化工具,界面友好。
	我们访问 [Chatbox AI 官网](https://chatboxai.app/zh),点击下载系统对应的版本。

三、部署(重点)–Windows系统
1.安装Ollama
1.1.下载Ollama
Ollama主页:https://ollama.com/ ,支持macOS, Linux 和 Windows 系统,点击下载按钮,获取OllamaSetup.exe安装程序。

	1.1.1.下载完成后,运行如下可执行应用程序,傻瓜式安装即可
	
	注意点:
	a.默认安装路径:%username%\AppData\Local\Programs\Ollama (例如我本机是:C:\Users\MyPC\AppData\Local\Programs\Ollama)
	b.安装后,先退出Ollama(电脑桌面有个羊驼小图标),退出后再进行环境变量配置
	(右键图标,会出现退出的按钮「Quit Ollama」,注意:一定要退出Ollama,否则下边的环境配置无法生效!)


1.2.运行环境配置
	1.2.1. 关闭开机自启动(可选)
		路径为--%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup
	Ollama 默认会随 Windows 自动启动,可以在「文件资源管理器」的地址栏中访问以下路径,删除其中的Ollama.lnk快捷方式文件,阻止它自动启动。
	
	1.2.2.配置环境变量(必须)
		a.存储路径
			Ollama 的默认模型存储路径如下:C:\Users\%username%\.ollama\models,无论 C 盘空间大小,需要安装多少模型,都建议换一个存放路径到其它盘,否则会影响电脑运行速度。打开「系统环境变量」,新建一个系统变量【OLLAMA_MODELS 】,然后设置ollama模型的存储路径
	变量名(N):OLLAMA_MODELS
	变量值(V):G:\Work\ollama\models ==》ps:按自己系统 实际盘 赋值具体路径值。
	
	b.配置端口(可选)
		变量名:OLLAMA_HOST
		变量值(端口)::11434 ==》ps:按实际拥有端口开放即可。
	只填写端口号可以同时侦听(所有) IPv4 和 IPv6 的:8000 端口。(变量值的端口前号前有个冒号:)
	注:要使用 IPv6,需要 Ollama 0.0.20 或更高版本。另外,可能需要在 Windows 防火墙中开放相应端口的远程访问。
	c.允许浏览器跨域请求(可选)
		变量名:OLLAMA_ORIGINS
		变量值:* 
1.3.启动Ollama服务&&执行指令
	a.启动Ollama服务
		cmd指令: ollama serve
		ps:看Ollama是否启动,可以通过 http://127.0.0.1:11434 访问看是否running,当然也可以直接看菜单栏是否有羊驼小图标
		
	b.下载对话模型(运行)
		cmd指令:ollama run <模型名称>,首次执行会从模型库中下载模型,所需时间取决于你的网速和模型大小。模型库地址:https://ollama.org.cn/library
		例如:ollama run deepseek-r1:7b

2.安装Anythingllm(或者ChatBox)
2.1下载Anythingllm
下载 :https://s3.us-west-1.amazonaws.com/public.useanything.com/latest/AnythingLLMDesktop.exe
下载后傻瓜式安装即可

2.2下载ChatBox
	[Chatbox AI 官网](https://chatboxai.app/zh),点击下载系统对应的版本。
下载后傻瓜式安装即可

四、利用场景&&效果展示
1.Anythingllm+Ollama
程序运行界面如下
在这里插入图片描述

1.1.配置对话模型

1.2.基于本地上传文档对话

2.ChatBox+Ollama
	程序运行界面如下
	
	2.1.配置对话模型

3.利用场景
	输入 相关指令,操作很简单,打开 DeepSeek 后,根据自己的需求,类似修改下方指令里【】中的描述,并在对话框发送:
	
	我需要做一个【主题(开发经理2025 年工作计划)】的 PPT, 面向【客户/领导/同事】, 希望突出【具体要求(例如汇报者的数据思维、分月计划等)】, 要求内容专业且适合演讲, 请生成大纲及内容框架,并以 Markdown 格式输出。
	可参考:https://www.163.com/dy/article/JNS3707A05169CIL.html
	1.验收相关文档优化输出
	2.邮件内容优化输出
......

五、代码接入netCore 代码接入Ollama通过OllamaApi
1.Ollama本地接入请求返回对话内容的接口地址是http://127.0.0.1:11434/api/generate‌。
使用HTTP POST请求,参数如下:
- ‌模型名称‌:指定使用的模型名称,例如deepseek-r1:7b。
- ‌提示文本‌:输入的提示文本,例如为什么天空是蓝色?。
- ‌流式处理‌:设置为false表示非流式处理返回。
示例请求参数:


```python
jsonCopy Code{
  "model": "deepseek-r1:7b",
  "prompt": "为什么天空是蓝色?",
  "stream": false
}
请求示例代码(使用Python的requests库):
import requests
import json

def generate_text(prompt, model="deepseek-r1:7b", base_url="http://localhost:11434"):
    url = f"{base_url}/api/generate"
    headers = {"Content-Type": "application/json"}
    data = {
        "model": model,
        "prompt": prompt,
        "stream": False
    }
    try:
        response = requests.post(url, headers=headers, json=data)
        response.raise_for_status()  # 检查HTTP错误状态码
        result = response.json()
        return result.get("response", "")
    except requests.exceptions.RequestException as e:
        return f"请求出错: {e}"
    except json.JSONDecodeError as e:
        return f"响应解析失败: {e}"

# 示例调用
if __name__ == "__main__":
    prompt = "给我一首描述春天的诗"
    response_text = generate_text(prompt)
    print(response_text)

post请求 http://localhost:11434
参数:
jsonCopy Code{
  "model": "deepseek-r1:7b",
  "prompt": "为什么天空是蓝色?",
  "stream": false
}

关注我的抖音号,获取更多相关内容!
在这里插入图片描述


<think>好的,用户想了解如何搭建本地办公智能体,也就是构建本地办公AI系统的架构设计和实现方案。首先,我需要结合用户提的引用内容,特别是引用[2]和[3],因为它们提到了AI架构和开发平台的相关信息。 用户提到的引用[2]中提到了AI整体架构,包括数据输入、处理、决策支持,以及RPA和IoT平台。引用[3]则涉及开发平台的工具支持,比如建模、设计、测试等服务。这些内容应该整合到回答中,确保架构设计部分覆盖这些模块。 接下来,我需要考虑用户可能的实际需求。本地办公AI系统可能用于自动化流程、数据分析、智能助手等,所以架构需要模块化,涵盖数据层、AI核心、应用层等。同时,实现方案需要分步骤,从需求分析到部署维护,可能还需要提到技术选型,比如Python、TensorFlow、RPA工具等。 用户可能还关心如何保证数据安全和系统效率,尤其是在本地部署的情况下。引用[1]提到OA系统提高效率,所以回答中需要强调自动化流程和效率提升。同时,引用[4]关于DSS的特征,比如数据和模型作为主要资源,支援决策而非替代,这些也可以应用到办公AI系统的设计原则中。 需要检查是否有遗漏的关键点,比如测试和维护阶段,这在引用[3]中有提到,所以实现方案里应包括测试服务和持续优化。此外,可能的问题会涉及数据预处理、模型选择、集成RPA等,所以相关问题部分要覆盖这些方面。 最后,确保回答结构清晰,分步骤说明架构设计和实现方案,并自然地融入引用内容,末尾添加引用标识。同时生成的相关问题要针对用户可能进一步关心的技术细节和应用场景。</think>### 如何构建本地办公AI系统 #### 一、架构设计 本地办公AI系统的架构设计需遵循模块化、可扩展性原则,核心分为以下层次: 1. **数据层** - **数据采集与存储**:整合企业本地数据源(如文档、数据库、IoT设备),使用$E_{\text{local}} = \sum_{i=1}^{n} D_i$表示本地数据集合[^2] - **数据预处理**:清洗结构化/非结构化数据,构建标准化数据集 2. **AI核心层** - **AI大脑**:部署自然语言处理(NLP)、计算机视觉(CV)等基础模型 - **RPA引擎**:自动化重复性办公流程(如报表生成、邮件分类)[^2] - **决策支持系统(DSS)**:通过知识图谱和规则引擎提业务建议[^4] 3. **应用层** - **智能助手**:支持语音/文本交互的办公辅助工具 - **自动化工作流**:基于$W = \{T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n\}$定义任务序列[^3] $$ \text{系统效能} = \frac{\text{自动化任务量}}{\text{总任务量}} \times 100\% $$ #### 二、实现方案 1. **需求分析与建模** - 使用BPMN工具建立业务流程模型,定义$M = (N, E)$,其中$N$为节点,$E$为边 2. **技术选型** - **开发框架**:Python + TensorFlow/PyTorch - **RPA工具**:UiPath/Automation Anywhere - **服务部署**:Docker容器化 + Kubernetes编排 3. **关键实现步骤 ```python # 示例:文档智能处理模块 from transformers import pipeline class DocProcessor: def __init__(self): self.nlp = pipeline("document-question-answering") def analyze_contract(self, doc_path): return self.nlp(question="合同有效期", document=doc_path) ``` 4. **测试与优化** - 单元测试覆盖核心算法(如验证$P(\text{准确率}) \geq 95\%$) - 压力测试保证并发处理能力 5. **部署维护** - 通过CI/CD管道实现持续集成 - 监控系统使用$M(t) = \alpha \log(t) + \beta$模型预测资源需求 #### 三、典型应用场景 1. 智能会议纪要生成 2. 自动化财务报销审批 3. 合同风险智能审查[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值