一、环境准备
1.理论环境要求
1.1. 硬件配置
本地部署需要一台高性能的计算机或服务器,具体硬件要求如下:
- 处理器(CPU):至少需要 8 核 16 线(Intel 或 AMD),推荐使用更高核数的 CPU(例如 12 核、16 核或更多),以支持多线程和并行计算。
- 内存(RAM):建议配备 32 GB 到 64 GB 的内存。具体内存需求取决于模型大小和任务复杂度,大型模型可能需要更高的内存。
- 存储设备:
- 使用 SSD(固态硬盘) 作为主存储设备,至少需要 50 GB 至 100 GB 空间用于操作系统、模型权重和其他项目文件。
- 如果需要更大容量的存储空间,可以考虑使用扩展型 SSD 或云存储服务(如 AWS S3、Azure Storage 或 Google Cloud Storage)。
- GPU(可选):
- 如果是基于 GPU 的混合计算环境(CPU + GPU),推荐使用 NVIDIA RTX 系列显卡 或 AMD Radeon 系列显卡,但本地部署时通常不需要直接配置显卡。
1.2. 操作系统
本地部署需要一个支持大模型训练和推理的操作系统。以下是一些推荐:
-
Linux:Linux(尤其是 Ubuntu)是最佳选择,因为其在 AI 和机器学习任务中高度优化,并且有丰富的工具链和社区支持。
-
推荐使用 Ubuntu 22.04 LTS 或更高版本。
-
如果是 64-bit 操作系统,可以提高计算效率。
-
macOS(可选):如果需要在苹果设备上运行,推荐使用 MacOS Catalina 及以上版本。不过 macOS 的支持相对 Linux 稳定性较低。
-
Windows(可选):本地部署在 Windows 上也是可行的,但需要注意一些工具链的兼容性和稳定性。
1.3. 软件和环境
为了本地部署 AnythingLLM 和 Ollama,需要安装相关的软件并配置环境: -
Python 环境:
-
在 Linux 或 macOS 上,推荐使用 Python 3.9 或更高版本。
-
安装 Python 环境时,可以使用 virtualenv 或 venv 创建虚拟环境,以隔离项目依赖的环境变量。
-
Jupyter Notebook(可选):
-
如果需要运行交互式 notebook,可以安装 Jupyter 和相关内核(如 PyTorch、TensorFlow 等)。
-
LLM 工具链:
-
安装 Ollama 和 AnythingLLM 的工具链。通常可以通过以下步骤安装:
BASHcd /path/to/ollama
./ollama init --local -
模型存储和推理工具:
-
使用 Ollama 客户端软件(如 ollama-cli)进行模型推理。
1.4. 安全性和稳定性
本地部署需要关注以下安全问题:
- 操作系统安全:确保操作系统和所有依赖的软件都是最新版本,避免漏洞利用。
- 权限管理:在Linux中,使用sudo或启用root账户时小心权限冲突。可以参考ls -l查看文件和目录的权限设置。
- 存储设备的安全性:使用强密码保护SSD或其他存储设备,并定期备份重要数据。
1.5. 参考官方文档
为了确保部署过程顺利,建议查阅以下官方文档:
- AnythingLLM 官方文档:https://github.com/anthropic/anythingllm
- Ollama 官方文档:https://ollama.ai/
- 官网提供详细的安装指南和运行示例。
- AWS、Azure 或 Google Cloud 的官方指南:
- 如果需要在云平台上部署,可以参考上述平台的官方文档。
1.6.总结
本地部署 AnythingLLM 和 Ollama 的主要配置要求是:
1.硬件:至少 8 核 CPU 和 32 GB RAM。
2.操作系统:推荐使用 Ubuntu 22.04 LTS 或更高版本。
3.软件环境:安装 Python、Jupyter Notebook 和相关工具链(如 Ollama 和 AnythingLLM)
2.本机操作系统参数
版本:window10专业版
系统类型:64 位操作系统, 基于 x64 的处理器
处理器:Intel® Core™ i7-6700 CPU @ 3.40GHz 3.40 GHz
机带RAM:32.0 GB (31.9 GB 可用)
二、安装包准备
1.线上模式(互联网模式)
直接访问各大模型官网提供的在线AI助手–连接网络即可,例如:
1.1.deepseek:https://chat.deepseek.com/
1.2.百科助手 https://uj3wrm.smartapps.baidu.com/
1.3.文心一言:https://yiyan.baidu.com/
2.线下模式(本地部署模式)
需要下载对应的大模型(如deepseek、Qwen2.5等)。
2.1.选择下载开源大语言模型
通过开源框架ollama,下载运行已有的大语言模型,地址:https://ollama.org.cn/library。命令窗口运行如下命令:ollama run xxx(模型名称和版本).
ollama run deepseek-r1:7b
ollama run qwen2.5:7b
… …
2.1.1.deepseek-r1
DeepSeek的第一代推理模型,性能与OpenAI-o1相当,包括基于Llama和Qwen的DeepSeek-R1提炼出的六个密集模型。
2.1.2.qwen2.5
Qwen2.5 模型在阿里巴巴最新的大规模数据集上进行预训练,数据集包含多达 18 万亿个 tokens。该模型支持最多 128K 个 tokens,并具有多语言支持。
2.2.图形化对话工具
2.2.1.AnythingLLM
AnythingLLM是一个由Mintplex Labs Inc.开发的全栈应用程序,旨在将任何文档、资源或内容片段转换为大语言模型(LLM)在聊天中可以利用的相关上下文。它支持几乎所有主流的大模型和多种文档类型,如PDF、TXT、DOCX等,并且具有高度的可定制性和开源特性12。https://anythingllm.com/desktop
下载 :https://s3.us-west-1.amazonaws.com/public.useanything.com/latest/AnythingLLMDesktop.exe
2.2.2.Chatbox AI
Chatbox AI 是专门用于与各种语言模型对话的图形化工具,界面友好。
我们访问 [Chatbox AI 官网](https://chatboxai.app/zh),点击下载系统对应的版本。
三、部署(重点)–Windows系统
1.安装Ollama
1.1.下载Ollama
Ollama主页:https://ollama.com/ ,支持macOS, Linux 和 Windows 系统,点击下载按钮,获取OllamaSetup.exe安装程序。
1.1.1.下载完成后,运行如下可执行应用程序,傻瓜式安装即可
注意点:
a.默认安装路径:%username%\AppData\Local\Programs\Ollama (例如我本机是:C:\Users\MyPC\AppData\Local\Programs\Ollama)
b.安装后,先退出Ollama(电脑桌面有个羊驼小图标),退出后再进行环境变量配置
(右键图标,会出现退出的按钮「Quit Ollama」,注意:一定要退出Ollama,否则下边的环境配置无法生效!)
1.2.运行环境配置
1.2.1. 关闭开机自启动(可选)
路径为--%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup
Ollama 默认会随 Windows 自动启动,可以在「文件资源管理器」的地址栏中访问以下路径,删除其中的Ollama.lnk快捷方式文件,阻止它自动启动。
1.2.2.配置环境变量(必须)
a.存储路径
Ollama 的默认模型存储路径如下:C:\Users\%username%\.ollama\models,无论 C 盘空间大小,需要安装多少模型,都建议换一个存放路径到其它盘,否则会影响电脑运行速度。打开「系统环境变量」,新建一个系统变量【OLLAMA_MODELS 】,然后设置ollama模型的存储路径
变量名(N):OLLAMA_MODELS
变量值(V):G:\Work\ollama\models ==》ps:按自己系统 实际盘 赋值具体路径值。
b.配置端口(可选)
变量名:OLLAMA_HOST
变量值(端口)::11434 ==》ps:按实际拥有端口开放即可。
只填写端口号可以同时侦听(所有) IPv4 和 IPv6 的:8000 端口。(变量值的端口前号前有个冒号:)
注:要使用 IPv6,需要 Ollama 0.0.20 或更高版本。另外,可能需要在 Windows 防火墙中开放相应端口的远程访问。
c.允许浏览器跨域请求(可选)
变量名:OLLAMA_ORIGINS
变量值:*
1.3.启动Ollama服务&&执行指令
a.启动Ollama服务
cmd指令: ollama serve
ps:看Ollama是否启动,可以通过 http://127.0.0.1:11434 访问看是否running,当然也可以直接看菜单栏是否有羊驼小图标
b.下载对话模型(运行)
cmd指令:ollama run <模型名称>,首次执行会从模型库中下载模型,所需时间取决于你的网速和模型大小。模型库地址:https://ollama.org.cn/library
例如:ollama run deepseek-r1:7b
2.安装Anythingllm(或者ChatBox)
2.1下载Anythingllm
下载 :https://s3.us-west-1.amazonaws.com/public.useanything.com/latest/AnythingLLMDesktop.exe
下载后傻瓜式安装即可
2.2下载ChatBox
[Chatbox AI 官网](https://chatboxai.app/zh),点击下载系统对应的版本。
下载后傻瓜式安装即可
四、利用场景&&效果展示
1.Anythingllm+Ollama
程序运行界面如下
1.1.配置对话模型
1.2.基于本地上传文档对话
2.ChatBox+Ollama
程序运行界面如下
2.1.配置对话模型
3.利用场景
输入 相关指令,操作很简单,打开 DeepSeek 后,根据自己的需求,类似修改下方指令里【】中的描述,并在对话框发送:
我需要做一个【主题(开发经理2025 年工作计划)】的 PPT, 面向【客户/领导/同事】, 希望突出【具体要求(例如汇报者的数据思维、分月计划等)】, 要求内容专业且适合演讲, 请生成大纲及内容框架,并以 Markdown 格式输出。
可参考:https://www.163.com/dy/article/JNS3707A05169CIL.html
1.验收相关文档优化输出
2.邮件内容优化输出
......
五、代码接入netCore 代码接入Ollama通过OllamaApi
1.Ollama本地接入请求返回对话内容的接口地址是http://127.0.0.1:11434/api/generate。
使用HTTP POST请求,参数如下:
- 模型名称:指定使用的模型名称,例如deepseek-r1:7b。
- 提示文本:输入的提示文本,例如为什么天空是蓝色?。
- 流式处理:设置为false表示非流式处理返回。
示例请求参数:
```python
jsonCopy Code{
"model": "deepseek-r1:7b",
"prompt": "为什么天空是蓝色?",
"stream": false
}
请求示例代码(使用Python的requests库):
import requests
import json
def generate_text(prompt, model="deepseek-r1:7b", base_url="http://localhost:11434"):
url = f"{base_url}/api/generate"
headers = {"Content-Type": "application/json"}
data = {
"model": model,
"prompt": prompt,
"stream": False
}
try:
response = requests.post(url, headers=headers, json=data)
response.raise_for_status() # 检查HTTP错误状态码
result = response.json()
return result.get("response", "")
except requests.exceptions.RequestException as e:
return f"请求出错: {e}"
except json.JSONDecodeError as e:
return f"响应解析失败: {e}"
# 示例调用
if __name__ == "__main__":
prompt = "给我一首描述春天的诗"
response_text = generate_text(prompt)
print(response_text)
post请求 http://localhost:11434
参数:
jsonCopy Code{
"model": "deepseek-r1:7b",
"prompt": "为什么天空是蓝色?",
"stream": false
}
关注我的抖音号,获取更多相关内容!