聚类分析思路分享,如何完成用户细分?

聚类分析广泛用于市场研究、管理研究中,用于对个体细分,或对比聚类后不同样本差异。本文给大家简单梳理下聚类分析的分析思路。

 

 

聚类分析,通俗地讲即是分类,根据样本的一些特征,最终将样本分为几类。

在总体类别划分不清楚的情况下,可以用聚类的方法来分类。

 

01 常用的聚类方法

Spssau提供两种常见聚类方法:

 

如果是按样本聚类,使用SPSSAU的进阶方法>“聚类分析”功能,可以分析定量或定类数据

如果是按变量(标题)聚类,可用分层聚类,此时数据只能是定量数据

需要结合数据类型及具体情况进行选择。

 

02 聚类前的准备

(1)聚类指标的选择

聚类分析前需要解决几个问题,首先要选择使用哪些变量分析,主要依据研究目标决定。

比如,研究目标是针对不同价值的客户进行分类。

那么研究的核心在于确定哪些指标可以代表客户价值的指标,如消费次数、购买量、顾客满意度、忠诚度等指标,然后以此进行客户分类。其他重要性较低的指标,则不应纳入分析(比如个人信息)。

如果题项较多,可先做因子分析,得到每个维度(因子)的数据,再进行聚类。

 

(2)聚类个数选择

聚类个数设置为几类没有固定的要求,用户可自行设置聚类数量,如果不进行设置,SPSSAU也会提供默认建议;通常情况下,建议设置聚类数量介于3~6个之间。

 

03 聚类分析

(1)Spssau操作   案例:旅游消费市场细分

分析前已经进行因子分析,提取出5个主因子,分别命名为分享、关注、便捷性、从众效应、负面口碑,接下来使用这5个指标,对样本进行聚类分析。

选择5个分析项,点击拖拽到右侧,进行分析。

 

(2)聚类结果分析

聚类分析往往是一个主观判断的过程,需要根据分析结果及个人专业知识判断,应该聚为几类更合适。

这里结合SPSSAU输出结果,提供几个判断聚类效果的方法:

 

数据分布均匀

一般来说,每个类别的样本比例应分布均匀,如果出现某一类占比过大或过小,可以考虑重新设置聚类类别个数。

 

SPSSAU聚类分析结果

 

 

结合频数表格与智能分析结果可知,整体分布较均匀,说明聚类个数设置为3类比较合适。

 

各类别特征的差异性明显

聚类类别与聚类分析项进行交叉分析,如果呈现出显著性(p<0.05),意味着聚类得到的不同类别样本,在相同指标上有明显的差异。

 

SPSSAU-聚类差异对比结果

 

同时可查看每个指标聚类时的重要性对比,如果某个指标重要性较低,考虑移出该指标。

 

 

从上述结果看,所有研究项均呈现出显著性,说明不同类别之间的特征有明显的区别,聚类的效果较好。

 

聚类类别有实际意义

聚类结果最终要得到几个有实际意义的类别。通过对比每类样本的特征,可以明显的区分出三类样本特征,并且根据样本特征进行命名。

 

 

通过上图可知,第一类人群在每个指标上的得分都比较高,可以命名为旅游爱好者。

第二类人群在各类指标的得分都比较低,可命名为旅游冷淡者。

第三类人群对便捷性、从众效应、负面口碑上有较高得分,相反关注旅游信息、和分享意愿都较低,命名为旅游从众者。

 

04 聚类后的差异分析

得到聚类类别之后,接着需要对比不同类别群体的差异性;包括如在“特征”、“行为”或者“态度”上的差异性。

最常见与个人信息情况做交叉分析,可以得到不同类型的人群分布情况。

或者与"态度题"、"行为题"的差异分析,能够更有针对性的了解不同类型人群的态度及需求,便于结合不同群体提出针对性的建议措施。

 

其他说明

聚类分析并非统计检验分析方法,而是一种数据描述性方法,没有严格的判断标准,因而可以比较多次聚类结果,综合选择更适合的方案。

如果有定类数据,或使用分层聚类方法分析,分析思路也是如此。

 

以上就是本次分享的内容,登录SPSSAU官网了解更多内容。

参考资源链接:[4G时代下手机银行的精准营销策略与聚类分析](https://wenku.csdn.net/doc/19c2grfcpy?utm_source=wenku_answer2doc_content) 针对如何利用蚁群聚类算法对手机银行用户行为数据进行聚类分析实现精准营销的问题,建议您查阅《4G时代下手机银行的精准营销策略与聚类分析》这份资料。它详细介绍了在4G和WIFI技术支撑下的电子银行业务,特别是在精准营销策略的制定和数据处理方面提供了深入的见解。 首先,蚁群聚类算法是一种模拟自然界蚂蚁觅食行为的群体智能算法,它适用于处理大规模数据集并发现数据中的隐含模式。在手机银行用户行为数据的聚类分析中,OACA算法可以通过以下步骤实现: 1. 数据预处理:收集用户的交易记录、登录频率、使用时段等行为数据,并进行数据清洗和标准化处理。 2. 初始化参数:设置蚁群算法的参数,包括蚂蚁数量、信息素的初始浓度、启发式信息函数等。 3. 构建目标函数:定义一个目标函数来衡量聚类的效果,通常为最小化聚类内的距离和最大化聚类间的距离。 4. 迭代搜索:蚂蚁根据信息素和启发式信息选择数据点加入聚类,不断更新信息素并迭代直至收敛。 5. 聚类结果:算法执行完成后,将得到若干用户行为聚类,每个聚类代表一类用户群体。 通过蚁群算法得到的聚类结果,可以分析出不同用户群体的特征和需求。例如,对高频使用者实施提高安全性的营销策略,对潜在用户推出具有吸引力的产品,以及为不同用户群体设计定制化的服务。这样的精准营销策略能够有效提高用户满意度和银行的市场份额。 《4G时代下手机银行的精准营销策略与聚类分析》不仅提供了理论和方法,还包括实际案例分析和算法实现的详细步骤,是深入理解并应用蚁群聚类算法于手机银行精准营销策略的理想资源。 参考资源链接:[4G时代下手机银行的精准营销策略与聚类分析](https://wenku.csdn.net/doc/19c2grfcpy?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值